
Chapter 10

Free Electrons in Crystals

10.1 INTRODUCTION

In the first five chapters while dealing with the structural aspect we ignored the effects arising 
due to electrons in the crystals. We assumed that the electrons surrounding the nucleus of an 
atom are tightly bound. This is valid for insulators, but not for semiconductors and metals. In 
order to understand the properties of semiconductors and particularly of metals, it is essential to 
take into account the behaviour of electrons in them. In this chapter, we shall concentrate mainly 
on the nature of existence and the role of electrons in deciding the properties of metals.

The outstanding properties of metals are their high electrical and thermal conductivities. 
Thus, soon after the discovery of electron, a number of investigators, particularly Drude and 
Lorentz attempted to explain these properties on the basis of free electron model. For the 
purpose, they made certain basic assumptions, which are as follows:

1. That a metal crystal consists of positive metal ions whose valence electrons are free to 
move between the ions as if they constitute an electron gas.

2. The crystal is then held together by electrostatic forces of attraction between the positively 
charged ions and the negatively charged electron gas.

3. The mutual repulsion between the electrons is ignored.
4. The potentical field due to positive ions is completely uniform, so that electrons can 

move from place to place in the crystal without any change in their energy.
5. They collide occasionally with the atoms, and at any given temperature, their velocities 

could be determined according to Maxwell-Boltzmann distribution law.

The free electron model was successful in explaining the properties such as electrical and 
thermal conductivities, thermionic emission, thermoelectric and galvanomagnetic effects, etc. 
However, this model failed to explain the properties of solids which are determined by their 
internal structure. It was unable to explain even the observed facts that why some solids are 

conductors and some insulators.
The first success was achieved in 1927 when Pauli applied quantum statistics to explain the 

weak paramagnetism of alkali metals. The very next year Sommerfeld published a modified free 
electron theory by replacing classical statistics of Maxwell-Boltzmann by Fermi-Dirac statistics. 
The Sommerfeld free electron theory of metals could be better described as the statistical 
thermodynamical behaviour of a gas obeying Fermi-Dirac statistics.
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10.2 ELECTRONS MOVING IN A ONE-DIMENSIONAL POTENTIAL 

WELL
Before we proceed further to discuss the modified free electron theory proposed by Sommerfeld 

and how it conforms with the quantum mechanical model of electrons, et us irst etemune tfce 
restrictions imposed by the laws of quantum mechanics on the energies o an electron inside a 

crystal. For the sake of mathematical simplicity, 
let us consider the case when an electron is 
limited to remain within a one-dimensional 
crystal of length a. Also, assume that the 
potential energy everywhere within this crystal 
is constant and equal to zero. However, at the 
two ends of the crystal the electron is prevented 
from leaving the ciystal by a very high potential 
energy barrier (Vo —> <*>) as shown in Fig. 10.1, 
i..e

V(x) =
Vo 

0

for x < 0 and x > a 

for 0 < x < a

Therefore, inside the crystal, the Schrodinger wave equation becomes

d2i//(x) 87t2m „ . . _

2 i 2 (•*) “ 0
dxL hl (2)

Any periodic function will satisfy this equation, and for the sake of simplicity let us suppose that 
the general solution of eq. 2 is of the type

V<x) = A sin kx + B cos kx (3)

where A and B are arbitrary constants to be determined by applying boundary conditions. Since 
the electron is bound inside the crystal of length a, the electron wave function has to satisfy the 
following boundary conditions simultaneously, i.e.

(i) y = 0 at x = 0. This gives us B = 0 and hence yr = A sin kx.

(ii) i/f = 0 at x = a. This gives us A sin (ka) = 0. Since A is not zero, therefore sin (ka) = 0. 

Consequently,

where n = 1,2, 3 ... represents the order of the state, n = 0 is not allowed because this will mean 
k = 0 and hence i/= 0 everywhere in the box. Therefore, the solution to the Schrodinger wave 
eq. 2 in the region 0 < x < a becomes

V/n=Asin^ (5)

For each value of “n” there is a corresponding quantum state % whose energy En can be 
obtained from eqs. 2 and 5 as
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E = _ /<2»2 (6)
8/r2m 8 ma2

Equation 6 shows that:

(i) The bound electrons can have only discrete energy values corresponding to n - 1,2, 3, 

... and not any arbitrary value of energy.
(ii) The lowest energy of thc particle is obtained from this equation by putting n = 1. It is 

given by

£i = ~^T 
8 ma1

=> En = trE}

(iii) The spacing between the two consecutive levels increases as

(«+ I)2 E1-/rE1 = (2n+ l)Ei

Fig. 10.2 shows the energy level diagram for the particle. The value of the constant A could be 
determined by normalizing the wave function, according to which the total probability that the 

particle is somewhere in the box must be unity, i.e.

E2 = 4£,

E4 = 16Ej

E3 = 9E1

h = 4

n = 3

71= 1

Fig. 10.2 Schematic representation of energy levels
o
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or
sin

2o
2nnx

a Jo
= 1

Since the second term of thc integrated expression becomes zero for both x = 0 and x a 

therefore (his gives us

Thus the normalized wave function is

. nnx sin-----
a

It can be shown that the wave function has two nodes at x - 0 and x - a, 1/2 has three nodes

at x = 0, x = a/2 and x = a and 1//3 has four 
nodes at x = 0, x = a/3, jc = 2a/3 and x = a. 
Consequently, the wave function i//n will have 
(n + 1) nodes. The wave function for the first 
three values of n are shown in Fig. 10.3.

To determine the probability distribution of 
particles within the potential well, let us start 
with the expression P(x) dx = I1//J2 dx over a 
small distance dx at x, i.e.

P(x)dx = -sin2 — dx 
a a

Thus the probability density for one dimensional 
system is Fig. 10.3 The wave function for n = 1, 2, and 3

P(x) = sin2 (8)

where P(x} is maximum when nitxla is an odd multiple of zr/2, i.e. 

nnx _ (2m - 1)tt 
a ~ 2

nm _ n 3_£ 
or a “ 2’ 2 ’ 2

a 3a 5a 
01 x~2n’2n’2n

Thus, the most probable positions corresponding to different quantum states of the particle can 

be obtained as 

ci r ——For n = 1, * - 2



Free Electrons in Crystals 327

For n = 2, £ 
4’ 4

For n = 3, a 3a a 5a 
6’ 6 ~T and T

The probability density for the first three values of n are shown in Fig. 10.4. According to the 
classical mechanics, the probability for finding the particle within a small distance d.x anywhere 
in the box is thc same and is equal to d.x/a. The 
probability density is simply l/« throughout 
the box, which is contrary to thc quantum 
mechanical result. Similarly, according to the 
classical prediction, there is a continuous range 
of possible energies. This is contrary to thc 
quantum mechanical result, according to which 
the energy is quantized and so, it cannot vary 
continuously. Consequently, thc quantum 
mechanical energy levels arc discrete. However, 
if the particle becomes heavier and thc length 
of the crystal is large (thc electrons will be free 
within this length), thc energy levels will be 
spaced very closely together and eventually may F‘R-10,4 
become continuous. For example, if a = 1 cm, then

The probability density for n = 1,2, and 3

En - En±1 ~ 3.5 x 10~,9cV

The energy spectrum for such cases seems practically continuous. Thus the wave equation 
predicts that thc bound particles (electrons) are associated with a discrete energy spectrum and 
free particles with a continuous spectrum.

V

Fig. 10.5 Thc wave function for n = 2 when thc 
potential barrier is not infinite

In the interior of a real crystal (he potential 
barriers for confining electrons are not infinitely 
high and arc determined in a complex way by 
thc surface energies of (he crystal. If (he potential 
barrier al (he surface of a crystal is high bin not 
infinite, (he wave function for n = 2 will have 
(he form as shown in Fig. 10.5. Note (hat (he 
wave function is sinusoidal in (he region 0 < .v 
< a and exponential outside (his region. Il is 
expected (hat (he extention of the wave function 
beyond the potential barrier is inversely 
proportional to the height of the barrier. Further, 
if the barrier is narrow, it is possible that (he 
wave function can extend beyond it. In this 
case, there is a little but finite probability (~ 
li//l“) ol finding thc electrons on the other side 
of the barrier. Thc ability of electrons to penetrate
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a potential barrier is called the “tunneling effect” and is a direct consequence of q^ 

mechanics to this problem.
Example: If a dust particle of one ^gm requires 100 s to cross a number
separation between two rigid walls of the potential, determine e q cribej

this motion.
Solution: Given: Separation between the walls, d = 1 mm = 10 m, the mass of the dust partic]^ 

m = 1 pgm = 10~9 kg, t = 100 s, the quantum number, n = ?
Since in 100 s, the dust particle moves 10”3 m. So that in Is, it wil move m. his is 

velocity of the particle. The energy of the dust particle is then given by

E = | mv2 = | x 10'9 x (IO'5 )2 = 5 x IO'20 J

We also know that for a one-dimensional potential the energy eigen value is given by

r - /*2k2
n 8 WO 2

or

or

n2 = 8ma2E = 8 x W9 x (10~3)2 x 5 x IO'20 = 9 j j x 1032 

h2 (6.626 X 10'34)2

n = 3 x IO16

10.3 THREE DIMENSIONAL POTENTIAL WELL
For simplicity, let us now consider a situation when the electrons are moving inside a three
dimensional potential box of side “a” as shown 
in Fig. 10.6. Like one dimensional case, the 
potential energy inside the cube is taken as zero 
and very high (tending to infinity) outside it. 
Under this assumption, the Schrodinger wave 
equation becomes

<7V(x,y, z) <72y/(x,y, z) d2y/(x,y,z)
+ dy2 + dz2 

f

87r2m _ . X A

+ ---Ey<(x,y,z) = 0 (9)
/r

for which straightforward solution of the 
standing wave type may be assumed, i.e.

Fig. 10.6 A three dimensional potential box

y/U, y, z) = Ax sin (fcxx) Ay sin (Ayy) Az sin (fczz) (10)

where x a y a a

Like one dimensional case, the value of the constants Ax, Ay and Az can be determined by
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applying the suitable boundary conditions, i.e. yr = 0 at x = 0 and x = a, y = 0 and y = a and 
7 = 0 and z = a, we have

4
/9V/2 

Mv = -y and Az = —

Therefore, the normalized wave function for a cubical box becomes

Vn =
\aj a

The corresponding form of energy is given by

. nxnx . n ny t n m 
sm ——sm——sin—— (11)

a a

or

£n =

En =

h2 

%ma2

12 2 h n

(nJ+«’ + «") (12)

8/na2 ’
where n2 = n2 + n2 + n2 

A J (13)

Thus, in three-dimensions, we have three quantum numbers nx, and n7 which can take only 
positive integer values.

Example: Find the lowest energy of an electron confined to move in a three dimensional potential 
box of length 0.5 A

Solution: Given: a = 0.5A = 0.5 x IO’10 m, E (lowest) = ?

The possible energies of a particle in a cubical box of side a are given by

r1 / 2 0 2\£n= -—t(mx+m;+mz)
8ma

For lowest energy nx = ny = nz = 1. Therefore

£in =
3/i2 3 x (6.626 xlO'34)2

Zma2 8x9.1 xlO"31 x (0.5 xlO’10)2

_ ~ . iA-17 t 7.24X10’17
= 7.24x10 1 J =------------ — = 452 eV

1.6 xlO’19

Example: Calculate the energy of an electron in the energy state immediately above the lowest 
energy level in a cubic box of side 1 A. Also find the temperature at which the average energy of 

the molecules of a perfect gas would be equal to the energy of the electron in the upper level.

Solution: Given: a = 1 A = 1 x IO’10 in, E (next to the lowest) = ? T = ?

E (next to the lowest) = 3/2 (k/T),

The lowest energy level is E1H and the next to the lowest level is E112. Therefore,

£| 12 -
6/i2 6 x (6.26 xlO-’4)2

8//w2 8x9.1xl0’31 x (1.0 xlO’10)2
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,7. 3.62 xJOjL = 226 eV 
= 3.62 x IO'" J =

Further, according to the question

lkT= 226 eV = 3.62 x IO'17 J 
2

or
_ 2 x 3.62 x 10-|7_ = i,75 x 106 K 

3 x 1.38 x IO"23

10.4 QUANTUM STATE AND DEGENERACY
The most important consequence of the three quantum numbers appearing in eq. 12 is that 

several combinations can yield the same value of energy. Each com ination o e quantum 
numbers is called a quantum state and several states having the same energy are sai to be 
degenerate. To make this more clear, let us take an example and suppose that one of the quantum 
numbers is equal to 2 and the others as unity. This gives three possible combinations of quantum 

numbers which are as follows:

(i) nx = 1, ny = 1, nz = 2
(ii) nx = 1, ny = 2, nz = 1

(iii) nx = 2, ny = 1, nz = 1

Substituting these values in eq. 11, the corresponding wave functions become

/2\3/2 . nx . ny . 2nz
1/112 = — sm — sin —sin------\a) a a a

(2\3/2 • nx . 2zry . nz 
l/i2i = — sm — sm—-sin— r \a) a a a

_ ■ I2\3/2 . 2nx . ny . nz
and Vz2ii = ~ sin------ sin —sin —

\al a a a

From eq. 12, the corresponding energies are found to be

£112 = £121 = £211 = 2 U4)

In the above example, since three wave functions are associated with the same energy, the 
corresponding energy level is said to be three-fold degenerate. On the basis of this model, the 
level in which all the quantum numbers have the same value (e.g. nx = ny = nz = 1 or 2, etc.) 
would be non-degenerate. Fig. 10.7 shows the energy level diagram for a particle in a three 
dimensional cubic box for the ground state and some excited states, together with the degree of 
degeneracy and quantum numbers.

It can be shown that the degeneracy breaks when a small modification is introduced to the 
system. For the purpose, let us consider the above discussed triply degenerate level which has
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Fig. 10.7 Six lowest energy levels for an electron in a three dimensional potential box

three independent energy states with quantum numbers (2, 1, 1), (1, 2, 1) and (1, 1, 2). The 
energy associated with the x-direction of the state having quantum number (2, 1, 1) is given by

4/i2
8 mo2

On the other hand, the energy associated with the x-direction of each of the other two states is 
given by

h2

8 ma2

Now, let the length of the cubical box be increased by a small amount da, along the x-axis while 
keeping the other dimensions unchanged. The corresponding change in the energy of the first state 
(2, 1,1) is

4/i2 
8m(a + da)2

Hence, the decrease in the energy is, say

r 4h2 4/i2 4/i2 f 1 1 )

8m2 8m(fl + da)2 8m (a + da)2 J

_ 4h2 a2 + 2a(da) + (da)2 - n2
8m a4 J

_ 4/i2 f 2da_A _ h2 /8Ja\

8m k a3 J 8ma2 \ a /
(15)

But for the remaining two states (1, 2, 1) and (1, 1, 2), the energy decrease is given by
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,,2 ----- J
£| = &m(a + da>

= 8wl a2 (a + da)2

h2_
Sm

,2 (Ida) J1L- {^i = 87? I’ZJ ' 8ma2 I a
,2 (Sda 2da} s J1L-&S.

Thus, AE = E2-E\ = -—2 a a J 8ma2 ' a
2 8 ma \ a '

. u 10 8 This aspect is relevant in explainino.u
This breakdown in the degeneracy is shown S' Qr e]ectric field. Under the actjo[) « Je 
fact such as the splitting of spectral lines mag the
field, the degenerate level breaks up into separate eve s.

Example:. Determine the degree of degeneracy of the energy level 38h2/8mfl2 of a particle in a 
cubical box of side a.

Solution: Given: (nx2 + n2 + n2) = 38. By trial and error method, we can find that there exist 

two sets of values. They are:

and

nK = 1, ny = 1, «z = 6

"x = 2, ny = 3, nz = 5

,S. tU"* " “y members =f .be de6.»»»
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116, 161, 611 three-fold degenerate

532, 325, 253, 352, 523, 235 six-fold degenerate

Thus, the given energy level is nine-fold degenerate.

10.5 THE DENSITY OF STATES

In ordre to determine the actual number of electrons in a given energy state, it is necessary to 

°w e num er o states in the system which have the energy under consideration multiplied 
y e pro a 11 y istn ution function. Therefore, if g(E)dE is the number of available quantum 

states in e energy range E and E + dE and F(E) is the probability function of the electrons 
occupying a particu ar energy state E, then the actual number of electrons N(E)dE present in the 
so ca e ee state in the above energy range at any temperature is given by

N(E)dE = F(E) g(E)dE (17)

Now, in order to calculate the density of states of electrons in the energy range E and E + dE, 
let us raw two spheres having radii n and n + dn in the n-space as shown in Fig. 10.9. Any point 

(hx, ny, nz) with integer values of coordinates represents an energy state. Thus, all the points on 
the surface of the sphere of radius n (where n2 = n2 + n2 + nz) will have the same energy. 
Since, nx, ny, nz can have positive integral non-zero values; therefore the number of states of 
energy less than E will be given by the positive octant of the sphere, i.e.

Fig. 10.9 Spheres representing density of states in n-space

(18)

Substituting the value of n from eq. 13, eq. 18 becomes

_ 1 4tt
gE> 8 ' 3

(8ma2E}V2 4trVz. x
( h2 ) (19)
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. ■ K„,h .ides of the eq. 19 with respect to E, We 

where V = a3. Now. differentiating ■ „
density of states in the energy interval an ..

2£^(2m)’'2 Em dE 
g(E')dE=-j^-^m>

. • i niinws two electrons in each state, so that the actmi a 
Since, the Pauli’s exclusion principle allo ^ehsity

of states in a volume V is given by

4/rV/O„,x3/2 rl/2g(E)rfE = V-<2m) E (2())

Hence, the density of states per unit volume in an energy interval dE is given by

g'^dE-^r^dE (2i)

The eq. 21 is diagramatically illustrated in Fig. 10.10. Now substituting the value of density Of

states and the probability distribution function 
(which is nothing but the Fermi-Dirac 
distribution function) in eq. 17, the density 
of states within the energy interval dE is given 
by

N(E) dE = F(E) g(E) dE

= ^-(2m')3l2EU2 — 
rr

exp

dE 
E-EF 

kT

(22)

This distribution is diagramatically shown in Fig. 10.10 Density of states as a function of electron
Fig. 10.11. The calculation of N(E) is illustrated energy
in Fig. 10.12 which shows that the free electrons
do not have zero energy at an absolute zero of temperature as one would have expected if the 
electrons were to obey classical statistics. Actually, the electron energy vary from zero to EF and 
also the number of electrons increases with the increase of energy which becomes maximum at 
EF. Since at absolute zero, F(E) = 1, therefore the total number of electrons is

4?rV
N(E)dE=~(2m)312 

rr o

or N = ^~(2m)3l2E212 (23)

The number of electrons n per unit volume (called the density of electrons) is

Hence, the Fermi energy at absolute zero is given by

(24)
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Fig. 10.11 Density of states as a function of electron energy at different temperature

Fig. 10.12 The calculation of the density of occupied electron states N(E) (a) Fermi-Dirac function, (b) 
Density of states, and (c) N(E) = F(E) x g(E)

1,2 In \2/3Ff = 2L- = 3 65 x 1O-19 nV3 eV (25)
2 m \8tt /

Further, at absolute zero, the average energy of an electron is given by

E = -M EW(E)rfE=~(2m)3'2 | £3'2dE = | x (2m)312 E312 (26)
N Jq Nii Jq 3 Nir

Substituting the value of N from eq. 23, we obtain

e = |ef (27)

Example: The density of Zn is 7.13 x 103 kg/m3 and its atomic weight is 65.4. Calculate the 

Fermi energy in zinc. Also calculate the mean energy at OK. The effective mass of the electron 
in zinc is 0.85 mc.

Solution: Given: p = 7.13 x 103 kg/m3, M = 65.4, >ncff = 0.85 mc, EF = ? Eo = ?

Since zinc is a divalent metal, thc number of electrons per unit volume will be

_ 2pN _ 2 x 7.13 x 103 x 6.023 x 102b _ n n v in28
n " M " 65.4 - 13.13 xtu
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75 the Fermi energy 1S 

Now, according to eq. 23, 2/3^1/
„2/3Wr.3.65xl0-'9'’

= 2tn \8;r/

= 3.65x 1O'i9x(13
]3x,o-)w = 9-43eV

and

- 3e _ 2x9.43 = 5.66eV 
£o = 5£f-5

10.6 FERMI-DIRAC STATISTICS exclusion principle, therefore, lh,.

Since, rhe elects are Persons and '“"S

energy distribution at any temperature 

as

F(E) =

+ 1

j r the Fermi energy. At absolute zero, th? 
where E is the energy of an allowed state an F 
distibution function has the following properties.

F(E) = 1 for all values of E < Ep

F(E) = 0 for all values of E > Ep

That is the levels below EF are completely filled, and all those
Hence, £> is the maximum energy of the filled state. However, or a y p g a er than
zero, F(E) = 1/2 at E = Ep. Therefore, the Fermi level in a metal is that energy level for which 
the probability of occupation is half. Further, at very high temperatures, as T tends to infnityJT 

» Ep. The electrons lose their quantum mechanical character and Fermi-Dirac distribution 

function reduces to classical Boltzmann distribution, exp (-EtkT). Fig. 10.13 gives a plot of the 

Fermi function versus allowed energy E at different temperatures.

Example: At what temperature we can expect a 10% probability that electrons in silver have an 

energy which is 1% above, the Fermi energy? The Fermi energy of silver is 5.5 eV.

FiS. 10.13 The Fermi distribution lunciiou a, di„e„M tempera,u„
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Soliilion.' Given: /■(/:) _ 10%, /; - £(,+ )% C|,_ 5 5 cV 7=7 |.|crc

E = 5-5 + W = 5,5 + 0 055 = 5.555 <>r E - = 0.055

Now. substituting the value ol' E - Fv. in eq. 28, we have

0.1 =-----

exp

_________£____________
0.055 xj?6 x IO’19 A

1.38 x 10~23 x T ) +

or exp(^)=9 or ^7 = ln 9 or 290K

x ’ 1 In 9

10.7 EFFECT OF TEMPERATURE ON FERMI DISTRIBUTION
FUNCTION

As we increase the temperature, the electrons lying just below the Fermi level gain energy and 
get excited. They occupy the energy level which were vacant at absolute zero. The number of 
free electrons lying in the energy interval dE at any temperature greater than absolute zero is 
given by

•OO 4 00

g(E)6/E-F(E) =
Jo Jo

4ttV \2/3—7- (2/n)Z/J 
h3

r~ ei/2 dE

0 (E ~ Ep 1
exp —+ I

Now, let us evaluate the integral in eq. 29 using the method of integration by parts, i.e. using the 

formula

itdv = nv - vdii

we have

( E-Ep

E[,2dE

? F212
(E-Ep 

exP

3/2 f E - Ep V 
E expl —— \dE 

y kl J

exp
E-Ep 

kT
+ 1 + 1
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Thc first term on thc right side of eq. 30 is zero for both the limits, because the pro ability of 
finding an electron for both (zero energy and infinite energy) is zero. Thc second term can be 
evaluated by making use of thc Taylor’s series, according to which any function g( i) in the 

neighbourhood of E = Ep can be expanded in powers of (E - Ep) as

8(E) = g(Ev) + (E - EP) g'(EP) + (g~2f|,)~ K"(Er} + . . . (31)

This will give us

E}12 = E212 + (E - EP) E'P12 + EF112 + ... (32)

Substituting eq. 32 into 30, (he integral I becomes

(33)

In order to simplify the above integral, let us put

E - Ep 
kT

= x, so that dE = kT dx

Further, taking into account the fact that at low temperatures such as kT « EF, the derivative 
F\E) is large only at energies near E = Ep as shown in Fig. 10.14.

where

and

Fig. 10.14 The Fermi distribution function and its derivative at E = Ep

F(E) = — 

exp
exp

E - EF A 
kT J

F'(E) = —(£).
exp

E-EF 
kT

1-2

kT ■ exp
( E - Ef A
I kT J
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( E - EP \ eXpl-lTiJ + I

For other values of E (particularly for negative values of E), F'(E) is negligible. Therefore, the 
lower limit in the integral may be taken as -<» instead of (-Ep/kT). The above integral becomes

1 = 3kT J_M (e* + I)2 E^'~ + |+ |(^2 A’2 Epl/2 + ... kTdx

2 p3/2 = 3 £f ——+ 3 £77; i/2 
(ex + I)2 2KI1^ xc*dx 

(cx + I)2
+ |(W)2 £r7l/2 x2e*dx

(ex + I)2
(34)

Now, making use of thc standard integrals such as

e'dx _ f~ xe*dx _n . x2e\lx _n2 
(e* + I)2 ’L(ex + 1)2 "OandL(e’+l)2" 3

eq. 34 becomes

/= j E?22-| + 0 + |(A7’)22-^-Epl/2 + - 2 p3tl 1 , 2T2 f AT 'I
"3£f i + t(e7J (35)

Taking into account only upto the second term and substituting the value of this integral (eq. 35) 
into eq. 29, we obtain

N =
j. Z2_( kT}2

8 I^ZTp J
4 nV 
h2

(2HI)’'2x|E’'2 (36)

At absolute zero, Ep = Ep0. Therefore, eq. 36 reduces to

/V = ^(W'2x|^
(37)

This is same as eq. 23, except subscript 0 in eq. 37, Now, substituting eq. 37 into 36. we obtain

■3/2 _ p3/2 I , 7T‘ ( kT )
* -£f i + t(eT) or Ep = Ep0

n2 kT '
>2^1 J (38)

Equation 38 indicates that the Fermi energy is not constant but decreases slightly as the temperature 
is increased. However, the value of the factor (kT/EVv)2 is very small at room temperature and 

the Fermi energy is considered to be a constant. Hence, subscript 0 is dropped from eq. 37.
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10.8 THE ELECTRONIC SPECIFIC HEAT *

According to Drude and Lorentz, the conductio niec|iaI1ics and statistical niechJ
are electron gas molecules which obey the c asst kinetic theory of gases), the ave^'^
(sec. 10.1). Further, from classical statistical mec < free electrons per mole th. *

r r , • Thus if a meiai v itienergy of a free electron is (3l2)kl. I nus 
average energy of the electrons per mole shou

{E) = lNkT = ^RT (

where N is the Avogadro’s number and R — Nk. Therefore, the electronic specific heat is .■ 

by

Cc=^=|/fS3cal/m°i.°K (40)

oT 2
However, the experimental measurements show that the electronic specific heat is smaller than 
the classical value (eq. 40) by a factor of about IO"2 This discrepancy was removed by lhc 

introduction of quantum statistics developed by E. Fermi an ... irac an is known as 

Fermi-Dirac statistics (eq. 28).
As the temperature increases, the electrons whose energy is close to the Fermi energy (£f;)> 

gain thermal energy of the order of kT, and go to the higher energy state above the Fermi level. 
That is the electrons having the energies between Ep and (Ep - kT) alone arc likely to be raised 
above Ep and the electrons below (Ep - kT) remain unaffected. An electron at the Fermi level 

may increase its energy from Ep to (£f + kT) at the most, so that a fraction kTIEp of the electrons 
is affected. Therefore, the number of electron excited per mole is approximately given by MT/ 
Ep. And since on an average each electron absorbs an energy of the order of 3kTI2, it follows 
that the thermal energy per mole is approximately given by

- NkT 3kT 3Nk2 .
E =-------x-------=---------- T~

Ep 2 2Ef
and hence the specific heat

(41)

, dE
e= — = 3M 

dT

kT

EK

kT 
= 3R — (42)

The approximate value of the electronic specific heat (eq. 42) obtained after the introduction of 
quantum statistics is in agreement with the experimental value. For a better agreement between the 
theoretically estimated value and the experimental result, it is necessary to know the average energy 
possessed by a free electron at any temperature T greater than absolute zero. It is given by

e=—r
N Jo

EN(E)dE=^.(2m)3'2 

Nh3
p E3/2 dE 
0 TT^-^p 

exp ----- L

(43)

From a calculation similar to the above the wam.. - . Tis obtained as D0Ve’the averag* energy of an electron at any temperature
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£T = £o I
( kT Y 

'2 UrJ (44)

Equation 44 indicates that the average energy is not constant and increases slightly as the 

temperature is increased. Now, the electronic specific heat at constant volume per electron can 
be obtained as

C _ 3(£t) _ 5n2k2T s 

d/ 6Ef()

Making use of the eq. 27 after putting the subscript 0 for absolute zero, eq. 45 becomes

Cc = . (46)

If we define the Fermi temperature by Tp = Ep//.-, then eq. 46 becomes

cc = 4 * <47>z 1Y

This result is in fair agreement with the experimental values. It is interesting to note that the 
electronic specific heal varies linearly with the temperature whereas the lattice specific heat 
varies as cube of the absolute temperature at low temperatures (eq. 36 of chapter 9) and so that 
the total specific heat of a metal at low temperature may be written as

Cv = Cc + Cj

or C. = AT+BT3 (48)

Fig. 10.15a shows the variation of the two specific heats with temperature, indicating that the 
electronic contribution dominates in the helium region and only after certain temperature the 
lattice contribution becomes predominant. On the other hand, a plot between CJT versus T~ 
shows a straight line having the intercept A and the slope B (Fig. 10.15b).

Example: Estimate the electronic contribution of specific heat kmol of copper al 4 K and 300 K. 
The Fermi energy of copper is 7.05 eV and is assumed to be temperature independent.

Fig. 10.15 (a) The variation of two specific heats of metal at low temperatures, (b) A plot between CJT 
versus T2
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Solution: Given: E,; = 7.05 eV = 7.05 x 1.6 x IO'1’ J. 7'i = 4 K, T2 - 300 K, Cc ?

Milking use of eq. 46, nnd substituting various values, we obtain at 4 K,

„ 22 r n 2 x (1.38 x K)-”)2 x4 x 6.023 x IO26

C" = *N= 2 x 7.05 X 1.6 X 10'19

= 2.00 J kmol’1 K"1

At 300 K,

Ce = 150 J kmol-1 K"1

10.9 THE ELECTRICAL CONDUCTIVITY OF METALS

Electron Drift in an Electrical Field
According to the free electron theory, electrons move freely in a conductor. In the absence of an 
electric field, the electron gas is in an equilibrium state described by equilibrium distribution 
functions, viz, the Fermi-Dirac distribution function for a degenerate electron gas and the Max­
well-Boltzmann distribution function for non-degenerate electron gas (rig. 10.16). Because of 
the fact that in a conductor the number of electrons moving in opposite directions is always the 
same, their average velocity in any direction is zero and consequently the distribution functions 
are symmetric about the axis of ordinates. This explains the fact that in the absence of an 
external electric field there is no electric current in a conductor, no matter how many free 
electrons it contains.

(a) (b)

Fig. 10.16 (a) Fermi-Dirac and (b) Boltzmann distribution function

When an electric field E is applied to a conductor, the random motion of the electrons gets 
modified in such a way that they drift slowly, in a direction opposite to that of the field, with an 
average drift velocity ud. As a result, the distribution functions experience a change as shown by 
dotted lines in Fig. 10.16. In order to calculate the drift velocity, let us consider a free electron 
in an electric field E. It will experience a force eE, which accelerates the electron according to 
Newton’s second law of motion 

m

where e is the electronic charge and m is the electronic mass, respectively. Prima facie, it appears 
that the electrons should be accelerated indefinitely and their velocity should grow continuously

(49)
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as a resu o e e ric lc • However, this is not correct. In fact, during their motion the 
electrons co i c w i i ic p tonons, impurities and lattice imperfections. As a result, they regularly 
lose tieir 'ine ic energy and hence the velocity they gained in the field. In other words, the 

electrons ave o surmount a reaction force Fr during their motion through the lattice. Thc 
reaction force is proportional to the drift velocity ud and is directed against it.

Fr= —Wud (50)
T

where T is called the relaxation time. Taking into account the eqs. 49 and 50, the equation of 
directional motion of the electron in the lattice may be written as

... ^(0 p /MUdm —-— = eE--------
dt t

(51)

Equation 51 tells us that the velocity of the directional motion of the electrons will rise and they 
will be accelerated until the two forces on the right hand side become equal when the resultant force 
acting on the electron, and accordingly the acceleration will become zero. Consequently,

eEr 
-----------

m
(52)

Since an electron has a negative charge, it drifts in a direction opposite to that of the field.
In a chemically pure and structurally perfect crystal where thc resistance force approaches 

zero, even a small field is enough to accelerate the electron indefinitely so that its velocity grows 
continuously which could become infinitely high. Actually, in a perfect lattice, electron wave 
propagates in an optically transparent medium.

10.10 RELAXATION TIME AND MEAN FREE PATH
Let us suppose that as soon as the velocity of the directional motion of the electrons attains a 
constant value ud, the field is turned off. This velocity starts diminishing as a result of collisions 
of the electrons with the phonons, impurities and lattice imperfections, and the electron gas 
ultimately return to an equilibrium state. Such a process leading to the establishment of equilibrium 
in a system is termed as relaxation process. Thus for E = 0, the eq. 51 becomes

<tod(f) =

dt T

so that ud(/) = ud exp (53)

where ud(t) is the velocity of the directional motion of the electrons and t is the time after the 
field is turned off. In eq. 53, t characterizes the rate at which the equilibrium state of a system 
is reached; smaller is the t sooner the system reaches to equilibrium state. For t = T, the velocity 
of the directional motion decreases by Me of its initial value. For pure metals, r 10~14 s.

The motion of an electron in a crystal may be conveniently described in terms of mean free 
path. By analogy with the kinetic theory of gases one may presume that an electron in a crystal 
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moves along a straight line until it collides with the lattice imperfection and gets scattered. The 
average distance A that thc electron travels between two successive collisions is taken as the 
mean free path of the electron. At room temperature, since the velocity imparted to the electrons 

by an applied electric field is much smaller thermal velocity, the time T taken by the electrons 
is travelling the distance A will thus be decided not by the drift velocity due to the field but by 

the average velocity u, due to random thermal motion. Therefore,

t=n£ (54)
V

where n is the number of collisions that are required to nullify the directional velocity completely.

10.11 ELECTRICAL CONDUCTIVITY AND OHM’S LAW

Ohm’s law is the most established experimental law relating to the conduction in metals and can 

be used to test the validity of the theory of electrical conductivity.
Knowing the drift velocity of the electrons, it is easy to calculate the current density and 

hence the conductivity of a metal. For the purpose, let us consider a cylindrical conductor of 
length ud and area of cross-section of unity as shown in Fig. 10.17. Suppose it contains A 
electrons per unit volume. Imagine any section of the conductor and count the number of charges 
passing through this section per second. Obviously, it will be equal to all the electrons inside this 
cylinder of volume 1. ud. Therefore, a current flowing through the conductor with a density

Fig. 10.17 Calculation of current density

I = N (l.ud) e = Ne (from eq. 52)

I m J (55)

This is at once recognizable as Ohm’s law (7 = cr£) where the conductivity a is given by
_ (Ne2x\ Kr 
°=[—}=Ne^ (56)

where // ei/m is called the carrier mobility and is defined as the average drift velocity per unit 
electric field, i.e.
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p = = £1
A in

and the resistivity p is given by

P = ~r- (57)
Ne *r

Equation .6 can be easily undcistood as follows: we expect the charge transported in thc 

niiiiuin U e pioportional to the charge density (n = Ne), thc factor (elm) enters because thc 
acce eralic n in a clcctiic field is proportional to e and inversely proportional to m (eq. 49) 
an lie time rccscn cs thc time during which (he field acts on thc carrier. This equation is of 
fun amenta importance. The electrical conductivity <r depends on two factors, the number n of 
earners per unit \ olume and their mobility p. The dependence of these quantities particularly on 
temperature pro\ ides thc basic understanding of the electrical properties of materials. For example, 
in metals, n is constant and p varies relatively slowly with temperature. In semiconductors, the 
exponential dependence of n is of primary importance while in some insulators, it is the exponential 
dependence of p on temperature that is significant while n is constant. An understanding of the 
relative contributions of n and p to cr enables us to explain the whole spectrum of values of a 

Example. Sodium metal with a bcc structure has two atoms per unit cell. The radius of the 
sodium atom is 1.85 A. Calculate its electrical resistivity at 0°C if the classical value of the mean 
free time at this temperature is 3 x 10'14 s.

Solution: Given: r = 3 x 10 14 s, Na has bcc structure with n = 2, /?Na = 1.85 A = 1.85 x 1O~10 
m, p = ?
For a bcc structure, we know that

73c/ = 47?,

or a = —^ = 4= x 1.85 x IO’10 = 4.27 x IO’10 m
75 75

Further, the number of electrons per unit volume in sodium atom is given by

PN = n = 2
M a3 (4.27 x IO'10)3

= 2.57 x 10 28/m3

Making use of eq. 57 and substituting different values, we can obtain

P =
in

n 'e2T

___________9.1 x 10~31 ...
2.57 x 1028 x (1.6 x 10-19)2 x 3.1 x 10-14 ' X ° Qm

Example: A uniform copper wire whose diameter is 0.16 cm carries a steady current of 10 amp. 
Its density and atomic weight are respectively, 8920 kg/m3 and 63.5. Calculate the current density 
and the drift velocity of the electrons in copper.
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Solution: Given: Density, p = 8920 kg/m3, At. wt. = 63.5,1 = 10 A, Diameter, d = 0.16 cm = 1g 
x 10"* m, and hence r = 8 x IO-4 m, J =? vll = 1 The number of electrons per unit volume in 

copper is given by

8.46 x 1028/m

= 4.97 x 106 A/m2

,, _ _ 8920 x 6.023 x 1026 =
M ~ 63.5

Now, the current density

j = I_ = 10 = 10 _ io9
a nr2 ?r(8 x 10"4)2 64?r

The drift velocity can be obtained by using the relation

v = 2.= 4-97 x 106
d ne 8.46 x 1028 x 1.6 x IO"19

Example: A uniform silver wire has a resistivity of 1.54 x 10'8 £2m at room temperature. For an 
electric field along the wire of 1 Volt/cm, compute the average drift velocity of the electrons, 
assuming that there are 5.8 x IO28 conduction electrons/m3. Also calculate the mobility and the 

relaxation time of the electron.

Solution: Given: p = 1.54 x W8 Qm, E = 1 V/cm = 100 V/m, n = 5.8 X 1028/m3, ud = ?

From eq. 56, the mobility is found to be

u = 01 = d_ =________________ 1________________
ne pne 1.54 x 10"8 x 5.8 x IO28 x 1.6 x 10'19

= 6.99 x 10'3 m2/Vs

Further, the drift velocity is given by

vd = /jE= 100 x 6.99 x 10"3 = 0.69 m/s

Also, the relaxation time T is given by

T= pn = 6:99^3 x 9J x KT31 = 3 97 x 1()_14s 
e 1.6 x 10“19

10.12 WIEDEMANN-FRANZ-LORENTZ LAW

From earlier discussions, we have come to know that the electrons are not only the agencies of 
electrical conduction in an electric field but also responsible for the transport of the thermal 
energy in a solid. For this reason, it would be natural to expect a relationship between the two 
conductivities, i.e.

f 7i2Nk2Tx\ f m _ (n2k2

o I 3w ) I J “ 3e2 J (58)

This relationship was first experimentally established by G. Wiedemann and P. Franz and then 
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theoretically explained by L. Lorentz for metals. Wiedemann and Franz observed that the ratio 

X’c/tr remains constant for all metals at a fixed temperature. However, this was modified by 
Lorentz, who observed that it is KJo(T) which remains constant. Accordingly, eq. 58 reduces to

\ v J

where L 3 J 2.45 x 10 Watt ohm deg-2, and is known as Lorentz number. Table 

10.1 shows the experimental values of L for some metals at 0°C and 100°C, respectively. They 

are oun ° a*ree W1 1 t eoretical value (eq. 59). At low temperatures (T « 0d), Lorentz 
num er en s 0 ecrease ecause the collision time involved in the two conductivities is not 
identical.

Table 10.1 Experimental Lorentz numbers for some metals

Metals Lorentz numbers 
0°C

(L x 10"8 Watt-ohm/deg2) 
100°C

Aq 2.31 2.37
Au 2.35 2.40
Cd 2.42 2.43
Cu 2.23 2.33
Ir 2.49 2.49

Mo 2.61 2.79
Pb 2.47 2.56
Pt 2.51 2.60
Sn 2.52 2.49
W 3.04 3.20
Zn 2.31 2.33

Example: A uniform copper wire of length 0.5 m and dimeter 0.3 mm has a resistance of 0.12 
Q at 293 K. If the thermal conductivity of the specimen at the same temperature is 390 Wm"1 
K-1, calculate the Lorentz number. Compare this value with the theoretical value.

Solution: Given: 1 = 0.5 m, d = 0.3 mm = 0.3 x 10-3 m, so that r = 0.15 x 10"3 m, R = 0.12 W, 

the Lorentz number = ?
We know that the resistance of a wire in terms of its length and its radius is given by

R = P-L2=-L2 
jir~ am­

or °° ° 0.12 x,(0°15x „-»)■■■ 5 ” X'°’
Hence, using eq. 59, we can obtain the Lorentz number as

A'e = 390
cr(7 ) 5.89 x 107 x 293

= 2.26 x lO^WflK-2
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On thc other hand, the theoretical value of (he Lorentz number can be obtained by using the 

expression

i "LiLi} /r(l.38x IO ”V = 284 x lO-’WfllC2 
3 (r2 J 3 V |,6 x IO'19 /

Comparing the above two values of Lorentz numbers, we observe that the theoretical value is 

about 1.26 times higher than thc experimental one.

10.13 THE ELECTRICAL RESISTIVITY OF METALS
At room temperature (~300 K) the electrical resistivity ol most metals is dominated by the 

collisions of conduction electrons with the phonons of the lattice (arising due to any perturbation 
in the normal positions of thc atoms). On the other hand, at liquid helium temperature (or around 
absolute zero) it is due to the collisions of electrons with the impurity atoms or other imperfections 
(such as vacancies, dislocations, grain boundaries, etc.) that are present in a real crystal (Fig. 
10.18). Thus in general, the resistivity of a metal containing imperfections is given by

P = Pi + Pi (60)

where p\ is the resistivity caused by the thermal vibrations of the lattice, p} (also called the 
residual resistivity) is the resistivity caused by the scattering of electrons by impurity atoms. For 
small impurity content, p\ is often independent of the number of defects N-v and pt is proportional 
to the but independent of temperature. Equation 60 is known as Matthiessen’s rule. This 
becomes less accurate at high temperatures or at high impurity content.

At very low temperatures, the scattering by phonon is negligible because of negligibly small 
amplitude of vibration. Therefore, as T approaches zero, r, tends to infinity so that p, approaches 
zero and hence p- p, from eq. 60. This is in agreement with the experimental results. Measurements 
on sodium show that p,(0) may vary.from specimen to specimen, whereas pt(T) = p- pM) is 
independent of the specimen. As the temperature increases, the scattering by phonons becomes
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more effective and p^T) increases linearly with 
the experimental results.

temperature. This again, is in agreement with

A simple method to estimate the nvpmii c , z
r . . ie overa11 impurity and perfection of a metal (conductor) is to 

measure the ratio of the resistivities nt t .nes at room temperature and at helium temperature, i.e.

p(300 K)
P(4.2 K)

Since, at 4.2 K, p = pt, the resistivity ratio is approximately given by

AUooig + pi
Pi

For chemically pure and structurally perfect metals, the resistivity ratio may be as high as 106. 
On the ot er and, for commercial purity materials, this ratio is of the order of 102, while for 
some alloys, it is as low as 1.

Matthiessen s rule is not always valid. Calculation of resistivity due to lattice vibration pb 
have been quite successful in some metals. Empirically, one finds that is rather well represented 
by a universal function,

(61)

where the function f goes to unity at high temperatures. However, at low temperatures, f « 

(T/Op) . The resistive characteristic temperature PR is close to the Debye temperature for metals.

Example: Calculate the percentage increase in the resistivity of nichrome when it is heated from 
300 K to 1000 K. The temperature coefficient of resistance of nichrome is 0.0001.

Solution: Given: 7\ = 300 K, T2 = 1000 K, a = 0.0001, (Pwoo- P300) = ? According to Matthiessen’s 
rule, we know that the resistivity of a metal containing impurity can be written as

p = pi + pj(T) = pi + aT

Therefore, p3oo = Pi + aTj and pi000 = p} + aT2

or Piooo ~ P300 = a^2 ~ ^i) = 700a = 700 x 0.0001 = 0.07

Therefore the percentage increase in the resistivity is

0.07 x 100 = 7%

10.14 THERMIONIC EMISSION
When a metal is heated, electrons are emitted from its surface, a phenomenon called thermionic 
emission. In sections 10.2 and 10.3, we considered that the height of the potential barrier is 
infinitely large. However, this is not actually the case in real crystals. At absolute zero:

(i) the height of the potential energy barrier can be taken equal to EF + as shown in Fig. 
10.19, where EF is the Fermi energy and e(j) is the work function.

(ii) all the levels upto the Fermi level are filled, and all the levels above the Fermi level are 

empty.
(iii) no electrons can escape from the metals.
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The work function e</> is the minimum energy required to remove an electron from the Fermj 
surface to the vacuum outside thc metal, where 0 is expresse in vo s an e0 tn e ectron volts 
(eV). The voltage 0 is required to overcome the attraction due to positive ions at the surface Of 
the metal. Fig. 10.20 shows an ideal potential (periodic in nature) encoun ere by electron 

along a row of atoms near thc surface and the potential energy arner at e sur ace o t e metal. 
In our day to day life, we do not observe any electron emission from metal surface even at room 
temperature. However, as the temperature is increased further, the electrons lying near the Fermi 
level get exited and begin to fill the levels above Er. Thus, when a metal >s heated, (i.e. when an 
energy greater than Ef + e0 is supplied), electrons are observed to be emitted from its surface. 
This phenomenon is known as thermionic emission.

• •------ ► Electron Vacuum

Fig. 10.19 Thermionic emission Fig. 10.20 Idealized potential energy of an electron 
along a row of atoms near the surface, and 
the potential energy barrier at the surface 
of the metal. The shaded area represents 
electron energy as given by the Fermi 
distribution shown on the left

In order to evaluate the current density for the emitted electrons, let us consider a metal 
surface held normal to the x-direction. Then, for an electron to escape from the metal surface, we 
must have

> (Ep + e0) (62)

where vy and v7 can have any values including + <» and - oo.
Now, let us write the density of occupied states (eq. 19) per unit volume in terms of velocity of 
electrons by substituting E = l/2(mv2), so that dE = mvdv. The modified equation becomes

N(v)dv = F(v)g(v)dv = ----------------------Tf~^F A-
expHH+1

Then the current density Jx will be eV* times the density of occupied states per unit volume. To 
simplify the problem, let us integrate the resulting equation over all electron velocities using 
cartesian coordinate system instead of spherical coordinate system. Thus replacing the quantity 
f47rv2dv by fdv*dvydvz, the current density Jx can be written as
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VidVxdVydVz

exp T +1
(64)

In ceneral, (E Fp)» AT, therefore the exponential term in the above equation is also very very 

arge an . us neg ectmg the digit 1 which is appearing in the denominator, the eq. 64 
reduces to 11 b

Now, making use of the standard form of the integral, i.e.

03

— oo

the above integrals separately can be given by

(66)

f ( mv? V kT ( E + e(b
and J y’-exP|-2irP = 77exP[-W^

v _ r2(EF+efl) 
m

Hence, the current density is given by

_ ATiemk2 ( e(b\ ~ ( e(b\Jx~~i T exp["IrJ ~AT exp[_IfJ

(67)

(68)

where A = (^nem ftllr*) = 1.20 x 106 Am-2K"2. Equation 68 is commonly known as Richardson- 

Dushman equation. This is in agreement with the experimental results. The eq. 68 can further be 
written as

T2 -■Aexp^ kTj

or lnA- = kM-^| (69)

If we plot a curve between In (Jx/T2) versus 1/1, we obtain a straight line which has a slope of 

(etyk) and the intercept equal to In A as shown in Fig. 10.21.
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Example: The work function of tungsten is 4.5 
eV. Calculate the thermionic emission of a 
filament 0.05 m long and 10”4 m diameter at 

2400 K.

Solution: Given: 0 = 4.5 eV, 2r = D- 10 m, 
1 = 0.05m, T = 2400K, A = 1.20 x 106 Am~~

K"2, / = ?
The surface area of the filament, a = 2/rrl = 

tcx 10~* x0.05 = 5/rx IO-6nr. Now, making use 
of the eq. 68 and substituting different values, 
the value of the current can be obtained as

Fig. 10.21 A plot between 1/T and log JIT2

I=axJ=ax AT2-expl--^7

= 5.x 10'6 x 1.20 x 106 (2400)2 x J

= 5.x 10’6 x 1.20 x 106 (2400)2 x exp (-21.739)

= 5.x 10‘6 x 1.20 x 106 (2400)2 x 3.62 x IO’10 = 393 x 10*4 amp

10.15 THE HALL EFFECT

Let us consider a rectangular metal slab carrying a current density Jx in the positive .v-direction 
and placed in a uniform magnetic field of induction B acting perpendicular to both the conductor 
and the current as shown in Fig. 10.22. Under
such an experimental arrangement, in 1879 G. 
Hall found that a voltage (called the Hall voltage) 
is developed at right angles to both the current 
and the magnetic field.

In the absence of the magnetic field, the 
conduction electrons drift with a velocity ux in 
the negative x-direction. However, when the 
field is applied, a force (called thc Lorentz force) 
causes the electron path to deflect towards the 
front face of the rectangular block. As a result, 
an excess of electrons accumulate on the front
face of the slab. Simultaneously, equal number Fig. 10.22 The Hall effect
of positive charge appears (due to the deficiency
of elections) on the opposite face of the slab. The appearance of the opposite charges on the 
opposite faces creates an electric field (called the Hall field) directed towards the positive y-axis.

The Lorentz force acting on an electron which is moving from right to left with a velocity 
v is

FL - - evx x Bz = - evxBz (since ux is 1 B) (70)
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Further, the accumulated charges on the oppositive faces produce a force (called Hall force) 

opposite to t e ^re^tz orce- Hence, the accumulation process continues until the Hall force 
completely cancels the Lorentz force. In equilibrium, FH = FL, i.e.

eEH = -ei>xBz or EH = -uxB2 (71)

Further, the current density, Jx is given by the equation

A - or (72)

This shows that the Hall field is proportional to both the magnetic field and the current density. 
The constant o proportionality in eq. 72 is known as Hall constant and is defined by

■ 7?h = -— (73)
ne

which is inversely proportional to the density of charge carrier, n. The sign of the Hall constant 
indicates the nature of the charge carrier that predominate in the conduction process. If /?H *s 
negative, the predominant charge is electron and vice versa. The measurement of Hall voltage 
helps us to know the following:

1. The sign of the predominant charge carrier.
2. The charge density.
3. The mobility of the charge carriers.

Example: Calculate the Hall coefficient of sodium based on free electron model. Sodium has 
bcc structure and the side of the cube is 4.28A.

Solution: Given: a = 4.28 A = 4.28 x 10"lom, crystal has a bcc structure indicating it contains 

2 atoms per unit cell, Hall coefficients = ?
The number of electrons per unit volume for the sodium crystal is given by

n =
2 = 2
a3 -(4.28)3xlO’30

= 2.55xl028/m3

Now, making use of eq. 73, the Hall coefficient can be obtained as

/?H =
_1_______________ 1___________
ne--2.55xl028 xl.6xl0'19

= -2.45 xlO'10 m C

10.16 SUMMARY
1. The free electron model successfully explains some of the properties of solids, such as 

electrical and thermal conductivities, thermionic emission, etc. However, it fails to explain 
many other important properties such as behaviour of solids as conductors, semiconductors 

or insulators, etc.
2. Free electrons are associated with a continuous energy spectrum and bound electrons 

with a discrete energy spectrum. The energy corresponding to the electrons moving in 

box of side a is given by
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where mx, ny and nr arc quantum numbers and can take only positive integer values.
3. Each combination of these quantum numbers is called a quantum state w i e several 

states having thc same energy arc said to be degenerate.
4. At absolute zero, thc density of electrons (thc number of electrons per unit vo ume) below 

the Fermi level is given by

zn.„\3/2 p.3/2"=^(2"') E>-

5. As the temperature is increased (particularly above room temperature) the Fermi energy 

is found to decrease according to the relation.

6. At low temperatures, the electronic specific heat of solids is found to be predominant 
and varies linearly with T. The electronic specific heat per mole is given by

7. The electrical conductivity of conduction electrons, treated as free particles with a collision 
time t is given by

Ne2T
<7= -------

m
8. Wiedemann-Franz-Lorentz law connects the thermal and electrical conductivities according 

to the relation

O 3 <e >

9. 'Taking into account the lattice vibrations and static impurities, the electrical resistivity 
of a solid is governed by Matthiessen’s rule

P = PitPi

10. When a metal is heated, some electrons which are lying just below the Fermi level acquire 
sufficient energy and escape from the surface of the metal. The thermionic current density 
is given by

where A is constant and 0 is the work function of the metal.
11. Hall effect helps us to determine the following:
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(i) Thc sign of the current currying charges.
(ii) The charge density.
(iii) The mobility of thc charge carriers

10.17 DEFINITIONS

Current Density. The electric current per unit area, amperes per square meter.
Electrical conductivity. The proportionality constant in Ohm’s law as stated below.
Electric Current. The time rate of passage of charge through a conductor. In SI units, coulomb per second, called 

amperes.
Electrical Resistivity. The inverse of the electrical conductivity, so that thc Ohm’s law is also E = pJ.
Electronic Specific Hear. Thc contribution to the total specific heat due to transitions of electrons to states of 

higher energy.
Fermi Level. In a partially filled energy band al OK, the Fermi level is the energy of thc highest filled slate. At 

higher temperatures, one half of the states at the Fermi level are full.
Mantlhiessen s Rule: Thc total resistivity of a conductor is the sum of lattice contribution as a result of lattice 

vibrations and thc impurity contribution as a result of presence of imperfections.
Residual Resistivity. Thc temperature independent part of thc resistivity of a conductor. This is due to imperfections. 
Resistivity Ratio: Usually, it is defined as p(300K)/p(4.2K), although the lower temperature may vary. In order 

to estimate the value of residual resistivity {p|(300K) + pdVPi is approximately taken as pi(300K)/p,.

REVIEW QUESTIONS AND PROBLEMS

1. A particle moving in a one dimensional potential, is given by

V(.v) = 0 for x < 0

and V(x) = Vo for x > 0

Write down the Schrodinger wave equation for the particle and solve it.
2. What is an infinite potential well? Obtain Schrodinger’s time independent wave equation. Solve it for 

a particle in a cubical box of side "a" and hence obtain expressions for the allowed wave functions and 
discrete energy values of the particle.

3. Obtain the eigen values and normalized wave functions for a particle in a one dimensional infinite 
potential box of side “a”,

4. A particle of mass in is confined in a field free region between impenetrable walls at .v = 0 and .x = a. 
Show that the stationary energy levels of the particle is given by

P _ h2n2 
n 8 win2

Discuss the physical significance of thc wave function ip.
5. Define Fermi energy. Write down the expression for Fermi-Dirac distribution function. Derive an 

expression for Fermi energy of a system of free electrons.
6. Based the Fermi-Dirac statistics, state the nature of the Fermi distribution function. How does it vary 

with temperature?
7. What are the density of states in metals? Derive an expression for the density of energy stales and hence 

obtain the Fermi energy of a metal.
8. What is meant by the Fermi level in metals? How does it vary with temperature in metals?
9. Show that the wavelength associated with an electron having an energy equal to the Fermi energy is 

given by
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Calculate thc molar specific heat of metals on thc basis of Fermi-Dirac statistics and compare it 

the classical predicted value.
10. The Fermi energy expression at room temperature is given by

where EP is the Fermi energy at OK.
Using the above equation, obtain thc expression for thc mean energy of thc electron at room temperature. 
Also obtain the expression for thc molar specific heat of metals on the basis of this distribution.

11. What do you understand by “degenerate” and “non degenerate” states? Taking the example of a particle 
in a cubical box of side “fl”, obtain first few states and present them graphically.

12. Derive an expression for thc electrical conductivity of a free electron gas using the collision time 
concept. Does this result explain the experimental value of resistivity of a normal metal like sodium.

13. On the basis of free electron theory derive an expression for the electrical and thermal conductivity Of 
metal and hence establish Wiedemann-Franz-Lorentz law.

14. What are the main sources of electrical resistance in metals? Discuss thc effect of impurity, temperature 
and alloying on the electrical conductivity of metals.

15. Explain the variation of electrical conductivity with temperature both at low and high temperature 
regions. Hence explain Matthiessen’s rule.

16. Discuss electron-scattering mechanisms in metals and show that the mean free path is inversely 
proportional to absolute temperature for T » 0D.

17. Obtain the expression of Lorentz number on the basis of quantum theory. Compare it with the one 
predicted on the basis of classical theory.

18. Discuss the Hall effect. Explain how the measurement of Hall coefficient helps one to determine the 
mobility of electrons in metals.

19. Show that the Hall coefficient is independent of the applied magnetic field and is inversely proportional 
to the current density and electronic charge. Mention the important applications of Hall effect.

20. Discuss the phenomenon of thermionic emission in metals. Obtain Richardson Dushman equation for 
the emission of current density.

21. The thermal conductivity of aluminium at 20°C is 210 Wirt'1. Calculate the electrical resistivity of 
aluminium at this temperature. The Lorentz number for aluminium is 2.02 x IO'8 WQK-2.

Ans. 2.82 x 10’8 Qm
22. A copper wire of cross sectional area 5 x 1 O’2 sq. cm. carries a steady current of 50 ampere. Assume one 

electron per atom, calculate the density of free electrons, the average drift velocity and the relaxation 
time. Given: the resistivity of copper = 1.7 x 10"8 Qm.

Ans. 8.46 x 1028/m3, 7.4 x 10"4 m/s and 2.46 x IO’14 s.
23. (a) Find the lowest energy of an electron confined in a box of side 1 A.

(b) Find the temperature at which the average energy of the molecule of a perfect gas would be equal 
to the lowest energy of the electron.

Ans. 112.9 eV, 8.72 x 105 K.
24. The electrons in a cubical box of a metal are subject to the influence of a magnetic field such that the 

length increases by da while the width and thickness remain thc same. Show that the energy difference 
between the states (311) and (131) is (hV8ma2) (16da/a) in the new position.

25. Evaluate the temperature at which there is 1% probability that a state with an energy 0.5 eV above the 
Fermi energy will be occupied by an electron.

Ans. 1264 K.
26. Calculate the number of states lying in an energy interval of 0.02 eV above the Fertni energy of sodium 

crystal of unit volume. For sodium, Ep = 3.22 eV. 4^ 2.47 x 1026
27. Use the Fermi distribution function to obtain the value of F(E) for E - Ep = 0.01 eV at 200 K.

Ans. 0.36
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„8. Show that the probability that a slate AE above the Fermi level Er. is filled equals thc probability that a 
state AE below is empty. 1

29. Assuming the electrons to be free calcnIntP i u r . . . . c ■ .• ,.
f , r < n-s i ’ eaiculalc "ic total number of states be ow E = 5 eV m a cubical boxof volume of 10 3 m. t tn->3

_A c f i . Ans. 5.1 x 10 .
n ' encr8y ° S1 VCJ,s 5.5 eV. Calculate thc fraction of free electrons at room temperature located 

upto a width of kT on cither side of Ev. Ans. 0.01.
31. Calculate the heat capacity of electron gas at room temperature in copper assuming one free electron per 

atom. Compare this wtth thc lattice specific heat value of 2.4 x 104 J kmol'1 K'1 The Fermi energy of 
copper is 7 eV.

„ ,1-r . A/is. 1.52 x 102 J kmol-1 K"1, 0.633%.
f 7nn°r th mC 3 -,S- °Un l° haVe 3 resistivily °f IO"6 at 0°C. When it is heated Io a temperature 

e resistivity increases by 8%. Using Matthicsscn’s rule, find thc resistivity of the alloy.
„„ - , , /bis. 0.969 x JO"6 Qm.
33. The electrical and thermal conductivities of silver at 20°C arc 6.22 x 107 m’1 and 423 Witr'K’1,

respec ive y. a cu ate thc Lorentz number on the basis of quantum free election theory.

Ans. 2.32 x 10’8 WQK'2.


