Chapter 10

Free Electrons in Crystals

10.1 INTRODUCTION

In the first five chapters while dealing with the structural aspect we ignored the effects arising
due to elcc;lrons In the crystals. We assumed that the electrons surrounding the nucleus of an
atom are tightly bound. This is valid for insulators, but not for semiconductors and metals. In
order to understand the properties of semiconductors and particularly of metals, it is essential to
take into account the behaviour of electrons in them. In this chapter, we shall concentrate mainly
on the nature of existence and the role of electrons in deciding the properties of metals.

The outstanding properties of metals are their high electrical and thermal conductivities.
Thus, soon after the discovery of electron, a number of investigators, particularly Drude and
Lorentz attempted to explain these properties on the basis of free electron model. For the
rurpose, they made certain basic assumptions, which are as follows:

I. That a metal crystal consists of positive metal ions whose valence electrons are free 0
move between the ions as if they constitute an electron gas.

2. The crystal is then held together by ¢lectrostatic forces of attraction between the positively
charged ions and the negatively charged electron gas.

3. The mutual repulsion between the electrons is ignored.

4. The potentical field due to positive jons is completely uniform, so that electrons can
move from place to place in the crystal without any change in their energy.

5. They collide occasionally with the atoms, and at any given temperature, their velocities
could be determined according to Maxwell-Bolizmann distribution law.

The free electron model was successful in explaining the properties such as electrical and
thermal conductivities, thermionic emission, thermoelectric and galvanomagnetic effects, etc.
However, this model failed to explain the properties of solids which are determined by their
internal structure. It was unable to explain even the observed facts that why some solids are
conductors and some insulators.

The first success was achieved in 1927 when Pauli applied quantum statistics to explain the
weak paramagnetism of alkali metals. The very next year Sommerfeld published a modified free
electron theory by replacing classical statistics of Maxwell-Boltzmann by Fermi-Dirac statistics.
The Sommerfeld free electron theory of metals could be better described as the statistical

thermodynamical behaviour of a gas obeying Fermi-Lirac statistics.
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10.2 ELECTRONS MOVING IN A ONE-DIMENSIONAL POTENTIAY,

WELL
Before we proceed further to discuss the modified free electron theory I’lz(:l:;s;‘:::)c’lstomn}erfel
and how it conforms with the quantum mechanical model of electrons., iy s em‘un.e the
restrictions imposed by the laws of quantum mechanics on the energies of an electron ing;g, a

crystal. For the sake of mathematical simplicity,

let us consider the case when an electron is
limited to remain within a one-dimensional Vo—
crystal of length a. Also, assume that the T
potential energy everywhere within this crystal Vo)
is constant and equal to zero. However, at the ST
two ends of the crystal the electron is prevented N Z
from leaving the crystal by a very highpotential [N  *—F
energy barrier (V, — o) as shown in Fig. 10.1, He—a — S
i.e 77T —.
0 x x=0 x=a X
Voo forx<Oandxza s
V(x) = . (1) - Fig. 10.1 A one dimensional potential box
0 forO<x<a
Therefore, inside the crystal, the Schrodinger wave equation becomes
d*y(x) 87%m '
+ Ey(x)=0 (2)
dx? w ¥

Any periodic function will satisfy this equation, and for the sake of simplicity let us suppose that
the general solution of eq. 2 is of the type

W(x) = A sin kx + B cos kx 3)
where A and B are arbitrary constants to be determined by applying boundary conditions. Since
the electron is bound inside the crystal of length a, the electron wave function has to satisfy the
following boundary conditions simultaneously, i.e.

(i) =0 atx=0. This gives us B =0 and hence y = A sin kx.
(i) w=0 at x = a. This gives us A sin (ka) = 0. Since A is not zero, therefore sin (ka) = 0.

Consequently,
= I
k=1 @)
wheren=1, 2, 3 .. . represents the order of the state, n = 0 is not allowed because this will mean
k = 0 and hence ¥ = 0 everywhere in the box. Therefore, the solution to the Schrodinger wave

eq. 2 in the region 0 < x < a becomes

v, =Asin -'3‘71—“— : (5)

For each value of “n” there is a corresponding quantum state y, whose energy E, can be

obtained from eqgs. 2 and 5 as
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= h’{.‘z _ i’ (6)
Stim  8ma?

Equation 6 shows that:

(i) The bound electrons can have only discrete energy values corresponding to n = 1, 2, 3,
.. and not any arbitrary value of energy.

(ii) The lowest energy of the particle is obtained from this equation by putting # = 1. Itis

given by
pl
E = h .
8ma
g
= E,=n'E,

(iii) The spacing between the two consecutive levels increases as
(n+ 1Y} E; = n’E; = (@2n+ 1) E|

Fig. 10.2 shows the energy level diagram for the particle. The value of the constant A could be
determined by normalizing the wave function, according to which the total probability that the
particle is somewhere in the box must be unity, i.e.

E4= 16El n=4

Ey=9E, n=3

Ez=4E| "=2
El n=1
0

Fig. 10.2 Schematic representation of energy levels
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2nmx |’

n

A}_ x——-a—-Sin"'_'_'_] =1
or 2 2rn a Jo

: : s zero for both x = Q
Since the second term of the integrated expression become nd x o ’
therefore this gives us

112
ﬁ:l or A=('2L)
2

Thus the normalized wave function is -

It can be shown that the wave function y, has two nodes at x = 0 and x = a, ¥, has three nodeg
at x =0, x = a/2 and x = a and y; has four
nodes at x = 0, x = a/3, x = 2a/3 and x = a.
Consequently, the wave function y, will have
(n + 1) nodes. The wave function for the first
three values of n are shown in Fig. 10.3. Vs \/
To determine the probability distribution of

particles within the potential well, let us start

with the expression P(x) dx = Iwnl2 dx over a

small distance dx at x, i.e. i

P(x)dx = 2 Gp2 D 5
a a

Vi
Thus the probability density for one dimensional x=0 x=a
system is Fig. 10.3 The wave function for n = 1, 2, and 3
_ 2 o2 nmx
P(x)= 7 sin” == (8)

where P(x) is maximum when nzx/a is an odd multiple of 7/2, i.e.

nm _ (2n =D

a 2
nme _m 3% 57
P a 202’2
__a 3asa
or =5 20’ 2n

Thus, the most probable positions corresponding to different quantum states of the particle ca
be obtained as -

(NS~

Forn=1, X
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Forn =2, _1-2%‘3%'
Forn =3, x=g30_0 . 3@
6’6 2 6

The probability density for the first three values of n are shown in Fig. 10.4. According to the

classical mechanics, the probability for finding the particle within a small distance dx anywhere
in the box is the same and is equal to dx/a. The

probability density is simply 1/a throughout
the box, which is contrary to the quantum
mechanical result. Similarly, according to the v it
classical prediction, there is a continuous range "

of possible energics. This is contrary to the
quantum mechanical result, according to which
the energy is quantized and so, it cannot vary

continuously. Consequently, the quantum Rt

mechanical energy levels are discrete. However,

if the particle becomes heavier and the length . /\
of the crystal is large (the electrons will be free i

within this length). the energy levels will be x=4 =4

spaced very closely together and eventually may Fig. 104 The probability density forn =1,2,and 3
become continuous. For example, if a = 1 cm, then

E, - E4 ~35x10" eV

The encrgy spectrum for such cases seems practically continuous. Thus the wave equation

predicts that the bound particles (clectrons) are associated with a discrete energy spectrum and
free particles with a continuous spectrum.

v In the interior of a real crystal the potential

A barriers for confining electrons are not infinitely

Y= ™ high and are determined in a complex way by

the surtace energies of the crystal. If the potential

barrier at the surface of a crystal is high but not

infinite, the wave function for n = 2 will have

P the form as shown in Fig. 10.5. Note that the

’ \ wave function is sinusoidal in the region 0 < x

/ \ < «a and exponential outside tiis region. 1t s

. expeeted that the extention ol the wave function

0 p Pk beyond the potential barrier is inversely

\ , proportional to the height of the barvier, Further,

\ / i the barrier is narrow, 1t is possible that the

P wave function can extend beyond it In this

case, there ts alittle but finite probability (~

lyd*) of fimding the electrons on the other side

of the barrier. The ability of electrons w penetre

Fig. 105 The wave function for n = 2 when the
potentinl barrier is not infinite
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: I “ A » and is a direct consequence of g,
a potential barrier is called the “tunneling effect q anyy,

mechanics to this problem. .
00 s to cross a distance of 1 mm whijcp, is {

Example: If a dust particle of one pgm requires | : N is gh,
o) ‘o i e the quantum number descr;
separation between two rigid walls of the potential, determin q beg by

this motion.
= 10~ m, the mass of the dust pap;
Solution: Given: Separation between the walls, d = 1 mm = 1;) m, { Particj

m =1 ugm = 107 kg, r = 100 s, the quantum number, n.== 4 ..
Since in 100 s, the dust particle moves 1072 m. S(? tha.l in Is, lt' Wl"bmo"'e 10™ m. This g the
velocity of the particle. The energy of the dust particle is then given by

-20
E=‘é’mv2 = ’l‘ x 10 x (107)* =5 x 1077J
We also know that for a one-dimensional potential the energy eigen value is given by
" 8ma?
g2 8ma’E _ 8x10° x (10°)2 xS X107 _ o) 4o
h2 (6.626 x 1073%)?

or n=3x10*

or

10.3 THREE DIMENSIONAL POTENTIAL WELL

For simplicity, let us now consider a situation when the electrons are moving inside a three
dimensional potential box of side “a” as shown
in Fig. 10.6. Like one dimensional case, the
potential energy inside the cube is taken as zero
and very high (tending to infinity) outside it.
Under this assumption, the Schrodinger wave

Z
A

equation becomes
dzl,(/(x,y,z) + dz'l/(x’ Y, Z) + de(X,y, Z) 0 > X
dx? dy2 dz?
87%m

LREY (. =0 O
Fig. 10.6 A three dimensional potential box

for which straightforward solution of the
standing wave type may be assumed, i.e.

+

W(x, ¥, 2) = Ay sin (kex) Ay sin (kyy) 4, sin (k2) (10)
n,m nym n,m
where ky =y sk ==

Like one dimensional case, the value of the constants A,, A, and A, can be determined by
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applying the suitable boundary conditions, i.e, w=0atx=0andx=a,y=0and y=a and

z=0and z = a, we have
7 p\IR2 17} 112
2 2 L
Ay = "l ,Ay=(—\] and A,=l2]
a) - \a

\@/ \ o
Therefore, the normalized wave function for a cubical box becomes
7 AN32
2 . NTX n nmz
= L-—J sin ——sin b4 .sin —2— (11)
a a a a
The corresponding form of energy is given by
E = h 2, 8 (12)
" d? (ny +ny +n;)
hnt s 2. 2 2
or E,= ——, where n*=nl+n; +n; (13)
8ma“* " ;

Thus, in three-dimensions, we have three quantum numbers ny, ny and n, which can take only
positive integer values.

Example: Find the lowest energy of an electron confined to move in a three dimensional potential
box of length 0.5 A

Solution: Given: a = 0.5A = 0.5 x 1071 m, E (lowest) = ?
The possible energies of a particle in a cubical box of side a are given by
hz 7 2
E = ——@+ni+n’
8ma’ (, y 2

For lowest energy n, = ny, = n, = 1. Therefore

3h? 3% (6.626 x 107%4)?
En = 7 Y Z10\2
8ma® 8x9.1x107" x(0.5%107™)
-17
= 7.24><10-”J=M=452cv
1.6 X107

Example: Calculate the energy of an electron in the energy state immediately above the lowest
energy level in a cubic box of side 1A. Also find the temperature at which the average energy of
the molecules of a perfect gas would be equal to the energy of the electron in the upper level.

Solution: Given: a =1 A = 1 x 107'% m, E (next to the lowest) =? T =?
E (next to the lowest) = 3/2 (k/T),
The lowest energy level is E};; and the next to the lowest level is E| 5. Therefore,

6h°  6x(6.26x107%)?
8ma®  8x9.1x107* x(1.0x107'9)?

Ein=
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3.62x 1077 _ 226 eV

=362 1077 = 5107

Further, according to the question

% KT =226eV =362x10"71

_2x3.62x107 _ |75 x10°K
o T3x138x107%

10.4 QUANTUM STATE AND DEGENERACY

e three quantum numbers appearing in eq. 12 is thy

i equence of th o g8
The most important conseq mbination of the quantyp,

several combinations can yield the same value of energy.. Each co rersatd
numbers is called a quantum state and several states having the same energy 10 be

degenerate. To make this more clear, let us take an example and suppose that'one: of th: quantum
numbers is equal to 2 and the others as unity. This gives three possible combinations of quantum

numbers which are as follows:

(i) ne=1,n=1n,=2
(ii) ne=1,n=2,n,=1
(iii) n=2n=1n,=1

Substituting these values in eq. 11, the corresponding wave functions become

{2132 X MY 21z
-1 Sl — — —
Y12 \ p = a

= \3/2 sin X sin L) sin z
Vi1 = \a) g p n

32

) . Ty . Tz

and = (—) SIn —— sin — sin —
Vi \a 2 p p

From eq. 12, the corresponding energies are found to be

2

Eyjpy=Ep =Ey = (14)

8 ma®
In the above example, since three wave functions are associated with the same energy, the
corresponding energy level is said to be three-fold degenerate. On the basis of this model, the
level in which all the quantum numbers have the same value (e.g. ny=ny,=n,=1or 2, etc.)
would be non-degenerate. Fig. 10.7 shows the energy level diagram for a particle in a three
dimensional cubic box for the ground state and some excited states, together with the degree of
degeneracy and quantum numbers.

It can be shown that the degeneracy breaks when a small modification is introduced to the
system. For the purpose, let us consider the above discussed triply degenerate level which has
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Eo- _ ———
az) ¢y @y 1) @3 e

Es" —_—

(222)

——

(113) 311 (131)

—

(122) 212) 21

@11) (121) (112)

E -

(111)

Fig. 10.7 Six lowest energy levels for an electron in a three dimensional potential box

three independent energy states with quantum numbers (2, 1, 1), (1, 2, 1) and (1, 1, 2). The
energy associated with the x-direction of the state having quantum number (2, 1, 1) is given by

4h?
8ma?

On the other hand, the energy associated with the x-direction of each of the other two states is
given by

h2
8 ma?

Now, let the length of the cubical box be increased by a small amount da, along the x-axis while

keeping the other dimensions unchanged. The corresponding change in the energy of the first state
(2,1, Dis

___4h®
8m(a + da)?
Hence, the decrease in the energy is, say
oo 4kt 4 _arr(1 1 )
“2" 8ma®  8m(a+da)?  8m\a® (a+da))

~ 8m 4

_4k? (az + 2a(da) + (da)? -aZJ
a

_ 4h? (Zda\l _ X 8da)
“8m\a® ) 8ma*\ a

(15)

But for the remaining two states (1, 2, 1) and (1, 1, 2), the energy decrease is given by
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h? l( e~ T
2

W (hzda)z ='§;7;\a ’(a+da)2
Ev=3 "7 gm(a+t
8ma
2 _ 2
1 4
(2
2 d
2 Z‘ELJ-;(%,E) (1g
“8m\a ) 8ma
2 da
da\_JL__ —-—)
]!2 (E.‘.If-.—-—-——')—smaz |\ a

Thus,AE:Ez—El=Wk a a
g. 10.8. This aspect is relevant in eXpIaining the

. i in Fi
This breakdown in the degeneracy is shownin ic or electric field. Under the action -

fact such as the splitting of spectral ]ifles ina magn}evels
field, the degenerate level breaks up 1nto separate .

E
I 2 ‘r h2 (2da
(21 Ir l) (]’ 2: ]) (]' l! ) — 1 > ( )
8ma a
or
1,2,1) (1,1,2)
[12 8da
Smaz T
8ma2 \ a
Y
2,1,1)
0 y

Fig. 10.8 The breakdown in degeneracy

Example: Determine the degree of degeneracy of the energy level 38h%/8ma? of a particle in a
cubical box of side a. "

Solution: Given: (n{ +nj +n?) =38, By trial and error method, we can find that there exist
two sets of values. They are:

nx= 1’"y= 1,n2=6
and hy = 2) ny = 3) n, = 5

Again, by simple manipulations, it is easy to determine the d; -
’ ed enerd
levels. They are: ifferent members of the deg
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116, 161, 611 three-fold degenerate
532, 325, 253, 352, 523, 235 six-fold degenerate

Thus, the given energy level is nine-folq degenerate.

10.5 THE DENSITY OF STATES

In ordre to determine the actual number of electrons in a given energy state, it is necessary to
know the nun?t.)er O,f St_ates in the system which have the energy under consideration multiplied
by the Probablluy distribution function. Therefore, if g(E)dE is the number of available quantum
states In the energy range E and E + dE and F (E) is the probability function of the electrons
occupying a particular energy state E, then the actual number of electrons N(E)dE present in the
so called free state in the above energy range at any temperature is given by

N(EYdE = F(E) g(E)dE (17)

Now, in order to calculate the density of states of electrons in the energy range E and E + dE,
let us draw two spheres having radii n and  + dn in the n-space as shown in Fig.'10.9. Any point
(ny, ny, n,) With integer values of coordinates represents an energy state. Thus, all the points on
the surface of the sphere of radius n (where n? = n? +n? +n}) will have the same energy.
Since, ny, ny, n, can have positive integral non-zero values; therefore the number of states of
energy less than E will be given by the positive octant of the sphere, i.e.

E+dE

dn

= Ily

ny

Fig. 10.9 Spheres representing density of states in n-space

1 4znd
g(E)=§° 3 (18)

Substituting the value of »n from eq. 13, eq. 18 becomes

3
y_1 4nm S_'E‘Z_E\ _4mv o ap an
8(E)=¢- 3[ ey —W\.Am; E (19)
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where V = a®. Now, differentiat i
density of states in the cncrgy intervs

g(E)dE

dL as

Since, the Pauli's exclusion
of states in a volume V is given by

g(E)dE = -——-(2 m)’

Hence, the density of

, ir a2 g2 JE
g(E)dE=‘h'3‘(2m) E

The eq. 21 is diagramalically illustrated in Fig. 10.10. No

states and the probability distribution function
(which is nothing but the Fermi-Dirac
distribution function) in eq. 17, the density
of states within the energy interval dE is given
by

ME) dE = F(E) g(E) dE

47TV ARV (o )32 gU2 dE

exp(E;TEF) +1
This distribution is diagramatically shown in

Fig. 10.11. The calculation of N(E) is illustrated
in Fig. 10.12 which shows that the free electrons

(22)

he e
ing both sides of ¢

i Y
states per unit volume in an energy inter

q. 19 with respect to E, v, obi.
d.lrl .lh

27rV 27V om m)¥? EV2dE

s in each state, so that the actug] dep

inci electron
principle allows two .

12 ElIZ dE
Qg

al dE is given by

(1)

w substituting the value of denSily of

g(E)

dE — F

Fig. 10.10 Density of states as a function of electron
energy

do not have zero energy at an absolute zero of temperature as one would have expected if the
electrons were to obey classical statistics. Actually, the electron energy vary from zero to Egand
also the number of electrons increases with the increase of energy which becomes maximum at
Er. Since at absolute zero, F(E) = 1, therefore the total number of electrons is

E
j N(E)dE = fl,i?i (2m)3? J ' EV*dE
h* 0
= N= % % 4}:5"' (2m)¥? E¥2 (23)
The number of electrons n per unit volume (called the density of electrons) is
e _{\,l (2 )32 g32 24

Hence, the Fermi energy at absolute zero is given by

-
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-
=
-

N(E) L—> T=0K

—> T,>0K

—

— Fermi level -~ ,

[ ]
[ ]

T:I_ >> 0K

9 0 06 9
99 90 6 0

0 —)E EF

Fig. 10.11 Density of states as a function of clectron energy at different temperature

s A
1 T=0K
I~ T=0K
\ 8(E) N(E)
F(E) X —
T>0K
\t T> 0K g iy

E E
@) (b) ©

Fig. 10.12  The calculation of the density of occupicd electron states N(E) (a) Fermi-Dirac function, (b)
Density of states, and (c) N(E) = F(E) x g(E)

2 [n,\23
F=2”—m\%} =3.65% 10719 n?B eV (25)

Further, at absolute zero, the average energy of an electron is given by

EF rEF
r_1 _ 4nV 312 e _ 2, 4nV 32 512
E=y 0 EN(E)dE-—Nh] (2m) Jo E*dE = £ x NI Q2m)*? E} (26)
Substituting the value of N from eq. 23, we obtain
E=3E @7

Example: The density of Zn is 7.13 x 10* kg/m’ and its atomic weight is 65.4. Calculate the
Fermi energy in zinc. Also calculate the mean energy at OK. The effective mass of the electron
in zinc is 0.85 m,.

Solution: Given: p = 7.13 x 10* kg/m®, M = 65.4, myg = 0.85 m,, Ep =7 E, =?
Since zinc is a divalent metal, the number of electrons per unit volume will be

_2pN _2x7.13x 10" x 6.023 x 10%

! 28
n=-—pr = 654 =13.13x 10
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e Fermi enefgy 15

Now, according to €q. 25, th 19,23V

g2 ()" =365 %10

EF - _2—';'— I\8ﬂl 028)2/3 = 943 ev
365 x 1079 x (13137
_5.66eY

3. - 3x943=56

and Eo=%Er= X
CS , o
10.6 FERMI-DIRAC STATISTI o pauli’s exclusion principle, therefore
d also obey t ssed by Fermi-Dirac distribution funCti;:;

. re Fermions an
Since, the electrons are e Tcan be exp

energy distribution at any temperatur
as |
1
=—TE-Er )41 Q
F(E)=—(E-Er ) 41 )
exp ( T

: energy. At absolute
J state and Ep the Fermt € &Y 2E10, the

where E is the energy of an allowe =
distibution function has the following propertics:
sof E<EF

F(E) = 1 for all value

F(E) = 0 for all values of E > EF
y filled, and all those above Ep are completely empty,

That is the levels below Ef are completel

Hence, Eg is the maximum energy of the filled state. However, f0.r any temperatue greater thy,
zero, F(E) = 1/2 at E = Ey. Therefore, the Fermi level in a metal is that energy level for which
the probability of occupation is half. Further, at very high temperatures, as T tends to infnity, 7
>> Ep. The electrons lose their quantum mechanical character and Fermi-Dirac distributioy -
function reduces to classical Boltzmann distribution, exp (—E/kT). Fig. 10.13 gives a plot of the
Fermi function versus allowed energy E at different temperatures.

Example: At what temperature we can expect a 10% probability that electrons in silver have an

energy whichl is 1% above, the Fermi energy? The Fermi energy of silver is 5.5 eV.

FE) 1
T=0K .
! 1
T=0K
> T> 0K
0
E EF O EF —-— E

an. 10.13  The Fermi distribution function at different temperatures
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Solution: Given: F(E) = 0%, [ = Eq+ 1% of Ip, Ep=5.5¢V, T =1 Here

=5 Had
T l()() 3.5 +0.055=5555 or F- = 0055

w. substituting the value of E = i in o
Now a alue of E Iy in ¢q. 28, we have

0.1 = | . ‘
0.055 x 1.6x 1019) . (6377
p( 138 x 105 x7 )t CXP*T_)H
(6377
or &\p( T )=9 or 63;7 :]n9 or T:w=29OK

In9

10.7 EFFECT OF TEMPERATURE ON FERMI DISTRIBUTION
FUNCTION

As we i.ncrease the temperature, the electrons lying just below the Fermi level gain energy and
get excited. They occupy the energy level which were vacant at absolute zero. The number of

free electrons lying in the energy interval dE at any temperature greater than absolute zero is
given by

N:J- N(E)dE-_—J 8(E)dE'F(E)=r 5;5(5);5
0 0 0 exP(_;TF)'”

aco 2
_ 4nv (_m)mj £ dE (29)

3 T
Z . exp(—b:—k—?F—F] + 1

Now, let us evaluate the integral in eq. 29 using the method of integration by parts, i.e. using the

formula
J udv = uv - J vdu

we have

- /2
1=j E2dE

exp(EkTEF ) + 1
- . E3’2exp(E_EF)dE
_|2E dE L2 j \ AT (30)
3 ex (E-Er +1 3 Jo E - Eg I ?
P( T ; exp| —7— | + 1| -kT
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The first term on the right side of eq. 30 is zero for both the limits, because the probability of
finding an electron for both (zero energy and infinite energy) is 710 The scco_nd term can be
evaluated by making use of the Taylor's series, according 1o which any function g(E) in the
neighbourhood of E = [ can be expanded in powers of (£ - Ep) as

- P (E - E7)2 "er
o(E) = p(Ey) + (E - Eg) g'(Ep) + ———27'—— g (Ep) + .. (31)

This will give us
E-Ep)? 3 .
EV? = B 4 (E - Ep) % EV? 4 (___2_'.")_ % E;* 4 ... (32)

Substituting ¢q. 32 into 30, the integral I becomes

E - E;
°’ CXP(T) _
S J ' . [E,-Z’z + 3 (E-E)EY + 3(E- Ep) B+ .. .]dE 33)
0 E - Ep ) ,
eXP| —%T )+ 1

In order to simplify the above integral, let us put
E-Ep
kT
" Further, taking into account the fact that at low temperatures such as kT << E, the derivative
F'(E) is large only at energies near E = Ep as shown in Fig. 10.14.

=x, so that dE = kT dx

F(E) _ JOF(E)
oE

\

Fig. 10.14 The Fermi distribution function and its derivative at E = E;;

¢ T—E By

- -1
where PE)=—— L. [exp( ) 1]
CXP( F) 1
)
- Egp -2
€X _—
and F,(E)=dF(E)_h[ p( kT )”J L
dE '~ AT 'CXP( kTF}'
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exp ( g ;TEF )

s = =
exp( kTEF)+1

For other values of E (particularly for negative values of E), F'(E) is negligible. Therefore, the
lower limit in the integral may be taken as —o instead of (-Eg/kT). The above integral becomes

oa

2 e*

I==%=

3kT J_ .. (e* + 1)2

B + SKTREY + k)2 2 B . Jwra

2| 32 'r erdy 3, oun [T et . 2n i
==2|E ———+ STV J. _xeldx 302 "’ZJ‘ Leax o 134
3[ Pl 200 (e* + 1)? ¥ 3(”) Er (et )P | )

Now, making use of the standard integrals such as

T etk [T xetdy I" lerde _ ml
‘1- — 1' o e = - : = —
.l._,, (e* +1)° J_,., (e* + 1)? I w(er+ D3

c¢q. 34 becomes

5 9 2 2 ) " 5 T Y | o]
I=Z[Eg"Z-l+0+%(k7‘)'2-”—£,§"'+...J=ZE$" 1+%(U—) +\ (35)

3 2 6 3 Er

Taking into account only upto the second term and substituting the value of this integral (eq. 35)
into eq. 29, we obtain

47V 1y 2 p L EL(ATY
N=]T(2m)3’ XEE;” {l+?(—) l (36)

At absolute zero, Eg = Ep,,. Therefore, ¢q. 36 reduces to

4nv w2y 2
N = iR (2m)*"* x 3 E (37)

Fo

This is same as eq. 23, except subscript 0 in eq. 37, Now, substituting ¢q. 37 into 36, we obtain

o (s Y - nt kY
() | "W(E;;H -

Equation 38 indicates that the Fermi energy is not constant but decreases slightly as the temperature
. . v . rpe Y.

is increased. However, the vadue of the fuctor (KT7Eg,)* is very small at room temperature and
the Fermi energy is considered to be a constant, Hence, subscript 0 is dropped from eq. 37.

32 _ p M2
Ei" = Ep
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HEAT

ectrons are treated as free particleg as

10.8 THE ELECTRONIC SPECIFIC

i ion ¢l ; At
According to Drude and Lorentz, the conducuo. N it oy 2 oy 1h@y
are clectron gas molecules which obey the classica :s (the kinetic theory of gases), the Mg
(sec. 10.1). Further, from classical statistical mechanics 2

~ontains N free electrons per p Ta,
energy of a free clectron is (3/2)kT. Thus if 2 metlz’li contains N Per mole the
average energy of the electrons per mole should be
Fy= NKT = 2gr
<E> = —2_ 2 (39)

nic speci .
where N is the Avogadro’s number and R = Nk. Therefore, the electro pecific heat Is Bivey

by
aE) 3, o
C, = __a(_Tl=ER=3caI/mol. K @

However, the experimental measurements show that tl;e ele:ctrqmc specific heat is Smaller thay
the classical value (eq. 40) by a factor of about 107 ThIS discrepancy 'was Tempved by the
introduction of quantum statistics developed by E. Fermi and P.A.M. Dirac and is knowp, a
Fermi-Dirac statistics (eq. 28). ) _

As the temperature increases, the electrons whose energy is close to the Fermi energy ()
gain thermal energy of the order of &7, and go to the higher energy state above the Ferm; leve].
That is the electrons having the energies between Ep and (Eg — £T) alone are likely to be rajgeg
above Ep and the electrons below (Eg — kT) remain unaffected. An electron at the Fermi Jeye|
may increase its energy from Ex to (Eg + £7) at the most, so that a fraction k7/Ey. of the electrop
is affected. Therefore, the number of electron excited per mole is approximately given by NkT/
Er.-And since on an average each electron absorbs an energy of the order of 3772, it follows

that the thermal energy per mole is approximately given by

—  NKT _3kT 3NK* _,
E= i X = -T- (41
E; 2 | J2E.
and hence the specific heat
aE 4 2 Fé . hY
Co= & _app| AT | 35| £T @)
aT \ I \El“

The approximate value of the electronic specific heat (eq. 42) obtained after the introduction of
quantum statistics is in agreement with the experimental value. For better agreement between the
theoretically estimated value and the experimental result, it is necessary Lo know the average cnergy
possessed by a free electron at any temperature T greater than absolute zero. It is given by

= 7 S 4rv e 312
E=— | EN(E)dE =-2"_(92;)3"? E"" dE @3)
N J.O Nh3 ( m) -I‘() 'E \
exp E 1+

From a calculation similar to the above, the average energy of an electron at any temperatv®
is obtained as |
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T g A N2
Er=E, 1+E_(_’*.T_) (44)
Er,

Equation 44 indicates that the aver
temperature is increased. Now,
be obtained as

¢ energy is not constant and increases slightly as the
the electronic specific heat at constant volume per electron can

I(Er) 227 _
C.= =21) L STKT (= (45

Making use of the eq. 27 after putting the subscript 0 for absolute zero, eq. 45 becomes

C, =TT 46
Y 2E].‘ ( )

(]

If we define the Fermi temperature by 7y = Eg/k, then eq. 46 becomes

Cc=ﬂ_-x£ (47)
2 T

This result is in fair agreement with the experimental values. It is interesting to note that the
electronic specific heat varies linearly with the temperature whereas the lattice specific heat
varies as cube of the absolute temperature at low temperatures (eq. 36 of chapter 9) and so that

the total specific heat of a metal at low temperature may be written as

Cy,=C.+C,
or C, = AT + BT (48)
Fig. 10.15a shows the variation of the two specific heats with temperature, indicating that the
electronic contribution dominates in the helium region and only after certain temperature the

lattice contribution becomes predominant. On the other hand, a plot between C./T versus T
shows a straight line having the intercept A and the slope B (Fig. 10.15b).

Example: Estimate the electronic contribution of specific heat kmol of copper at 4 K and 300 K.
The Fermi energy of copper is 7.05 eV and is assumed te be temperature independent.

r——"

(a) (b)

Fig. 10.15 (a) The variation of two specific heats of metal at low temperatures, (b) A plot between C,/T
versus T°
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-]¢ g y — 00 K, C = ?
Solution: Given: Ey = 7.05 ¢V = 7.05 x 1L6x 1075, 7y =4 K, T, =3 e

. . H v vy W H i ﬂl 4 K,
Making use of cq. 46, and substituting various valucs, we obtain

26
r k2T 72 % (1,38 x 10722 x 4 X 6,023 X 10
Com=Fp—XN= 2% 7.05 X 1.6 x 107

I'n

=2.00 J kmol™' K
AL300 K,
C, = 150 ] kmol™ K™'

10.9 THE ELECTRICAL CONDUCTIVITY OF METALS

Electron Drift in an Electrical Field
According to the free electron theory, electrons move freely in a conductor. .Ip t}'le abs?nc.e of' an
electric field, the electron gas is in an equilibrium state described by equilibrium distributiop
functions, viz, the Fermi-Dirac distribution function for a degenerate electron gas and the Max-
well-Boltzmann distribution function for non-degenerate electron gas (Fig. 10.]6).. Because of
the fact that in a conductor the number of electrons moving in opposite direclipns }s always the
same, their average velocity in any direction is zero and consequently the distribution functions
are symmetric about the axis of ordinates. This explains the fact that in the absence of an
external electric field there is no electric current in a conductor, no matter how many free
electrons it contains.

Jr(vy) 4 )

]\ ———
>0\

Fo )
2
N

Ug Uy Uy

A\ 4

(a) {b)

Fig. 10.16 (a) Fermi-Dirac and (b) Boltzmann distribution function

When an electric field E is applied to a conductor, the random motion of the electrons gets
modified in such a way that they drift slowly, in a direction opposite to that of the field, with an
average drift velocity vy. As a result, the distribution functions experience a change as shown by
dotted lines in Fig. 10.16. In order to calculate the drift velocity, let us consider a free electron
in an electric field E. It will experience a force eE, which accelerates the electron according to
Newton’s second law of motion

a= (49)

m

where e is the electronic charge and m is the electronic mass, respectively. Prima facie, it appears
that the electrons should be accelerated indefinitely and their velocity should grow continuously
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as a ms:llclo(l)lt;;:f\pill::;lrlc tll"wld. Hf)wevc.r, this is not correct. Tn fact, during their motion the
clectron? ' Phonons, impuritics and lattice imperfections. As a result, they regularly

lose their kinetic energy and hence (he velocity they gained in the field. In other words, the

have 1o sur : 2 : i
chthonSf Ave 10 surmount a reacllon. force F, during their motion through the lattice. The
reaction 1orce 1s proportional 1o the drif} velocity vy and is directed against it.

1
F = o my, (50)

“:here. T1s callc-d the relaxation time, Taking into account the eqs. 49 and 50, the equation of
directional motion of the electron in the lagtice may be written as

du,y(1) my
m——=zpf_ 4
dt ¢ T (51)

Equatlon 51 tells us lhat the velocity of the directional motion of the electrons will rise and they
will be accelerated until the two forces on the right hand side become equal when the resultant force
acting on the electron, and accordingly the acceleration will become zero. Consequently,

eET

Vg= — (52)
m

Since an electron has a negative charge, it drifts in a direction opposite to that of the field.
In a chemically pure and structurally perfect crystal where the resistance force approaches
zero, even a small field is enough to accelerate the electron indefinitely so that its velocity grows

continuously which could become infinitely high. Actually, in a perfect lattice, electron wave
propagates in an optically transparent medium.

10.10 RELAXATION TIME AND MEAN FREE PATH

Let us suppose that as soon as the velocity of the dircctional motion of the electrons attains a
constant value vy, the field is turned off. This velocity starts diminishing as a result of collisions
of the electrons with the phonons, impuritics and lattice imperfections, and the clectron gas
ultimately return to an equilibrium state. Such a process leading to the establishment of equilibrium
in a system is termed as relaxation process. Thus for E = 0, the eq. 51 becomes

duy(1) _ u,(1)
dt T

&
so that va() = Yy CXP[_?J (53)

where v4(7) is the velocity of the directional motion of the electrons and ¢ is the time after the
field is turned off. In eq. 53, T characterizes the rate at which the equilibrium state of a system
is reached; smaller is the  sooner the system reaches to equilibrium state. For r = 7, the velocity
of the directional motion decreases by 1/e of its initial value. For pure metals, 7 = 1071 s.
The motion of an electron in a crystal may be conveniently described in terms of mean free
path. By analogy with the kinetic theory of gases one may presume that an electron in a crystal
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- . : P ion ¢ ets scattered. T
moves along a straight line until it collides with the lattice imperfection and g he

i lisions is taken as th
average distance A that the electron travels between two successive c.ol e
¥ elocity imparted to the electrons

mean free path of the electron. At room temperature, since the v
the time 7 taken by the electrong

by an applied electric field is much smaller thermal vclocit)", . due to the field but b
is travelling the distance A will thus be decided not by the drift velocity y

the average velocity v, due to random thermal motion. Therefore,

(54)

SIS

T=n

where n is the number of collisions that are required to nullify the directional velocity completely.

10.11 ELECTRICAL CONDUCTIVITY AND OHM’S LAW

Ohm’s law is the most established experimental law relating to the conduction in metals and can
be used to test the validity of the theory of electrical conductivity. .
Knowing the drift velocity of the electrons, it is easy to calculate thc? current density and
hence the conductivity of a metal. For the purpose, let us consider a cylindrical .conduc?or of
length vy and area of cross-section of unity as shown in Fig. 10.17. Suppose it contains N
electrons per unit volume. Imagine any section of the conductor and count the number f’f c.:harge:s
passing through this section per second. Obviously, it will be equal to all the electf'ons msndf: this
cylinder of volume 1. vgy. Therefore, a current flowing through the conductor with a density

Vi _

NE

Fig. 10.17 Calculation of current density

I=N(log)e= Ne ("f—f) (from eq. 52)

Ne’t
m )E (33)

y
This is at once recognizable as Ohm’s law (I = 6E) where the conductivity ¢ is given by

2
()':(Ne T):Ne’u (5())

m

where U = e/m is called the carrier mobility and is defined as the average drift velocity per unit

electric field, i.e.
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/l = “'I— = .('I
I m
and the resistivity p s given by
n
[) = (57)
Ne’t

Equation 56 can be casily understood

_ _ as follows: we expeet the charge transported in the
medium 1o be proportional o (e ch

. : arge density (n = Ne), the factor (e/m) enters because the
uccclcrallmn ma given cleetrie field is proportional to ¢ and inversely proportional to m (eq. 49)
and the time 7 describes the time during which the ficld acts on the carrier. This equation is of
fundamental il}lporlﬂn&. The electrical conductivity o depends on two factors, the number # of
carriers per unit volume and their mobility 1. The dependence of these quantitics particularly on
temperature Providcs the basic understanding of the electrical properties of materials. For example,
in metals. n is constant and y varies relatively slowly with temperature. In semiconductors, the
exponential dependence of n is of primary importance while in some insulators, it is the exponential
dependence of i on temperature that is significant while n is constant. An understanding of the
relative contributions of  and  to o enables us to explain the whole spectrum of values of ©.

Example: Sodium metal with a bee structure has two atoms per unit cell. The radius of the

sodium atom is 1.85 A. Calculate its electrical resistivity at 0°C if the classical value of the mean

free time at this temperature is 3 x 104 g,

Solution: Given: T=13x 107" s, Na has bce structure with n = 2, Rya=1.85 A =1.85% 10710
m,p="7

For a bcc structure, we know that
J3a = 4R,

o a= R4 X 185%x10'°=427x 1070

3y vy V3

Further, the number of electrons per unit volume in sodium atom is given by

, PN 2 28 3
=== =257 x 10/
M =33 T (427 x 1003 =

n

Making use of eq. 57 and substituting different values, we can obtain

m
p

— —7
n‘e 1

p 9.1 x 107
T 257x10% x (1.6 x 10719)2 x 3.1 x 10714

=446 x 10~ Qm

Example: A uniform copper wire whose diameter is 0.16 cm carries a steady current of 10 amp.
Its density and atomic weight are respectively, 8920 kg/m? and 63.5. Calculate the current density
and the drift velocity of the electrons in copper.
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Solution: Given: Density, p = 8920 kg/m3, At. wt. = 63.5, I = 10 A, Diameter, d= 0_.16 cm = |g
X 107 m, and hence r = 8 x 10~ m, J = ? vy = ? The number of electrons per unit volume jp

copper is given by

= PN _ 8920 x 6.023 x 10 _ ¢ 46 x 10%/m’

n

M~ 63.5
Now, the current density
I _ 10 10 10° 6 2
J:——: = = =497XIO A/m
a gr: g@x10™)?  64m

The drift velocity can be obtained by using the relation

y 4.97 x 108 =3.67 x 10 m/s

d ===

ne  8.46 x 102 x 1.6 x 107°

Example: A uniform silver wire has a resistivity of 1.54 x 10® Qm at room temperature. For an
electric field along the wire of 1 Volt/cm, compute the average drift velocity of the electrons,
assuming that there are 5.8 x 10%® conduction electrons/m>. Also calculate the mobility and the

relaxation time of the electron.
Solution: Given: p=1.54 x 10 Qm, E =1 V/cm = 100 V/m, n = 5.8 X 10%/m?, vy = ?
From eq. 56, the mobility is found to be

H = g— = 1 = 1
" ne pne 154x10° x58x10% x 1.6 x 107

=6.99 x 1073 m¥Vs

Further, the drift velocity is given by
vy = ME =100 X 6.99 x 107 = 0.69 m/s

Also, the relaxation time 7 is given by

-3 =31
ll;n _ 699 x 1106 ><>;09_.119>< 107~ _ 3.97 x 104

=

10.12 WIEDEMANN-FRANZ-LORENTZ LAW

From earlier discussions, we have come to know that the electrons are not only the agencies of
electrical conduction in an electric field but also responsible for the transport of the thermal
energy in a solid. For this reason, it would be natural to expect a relationship between the two

conductivities, i.e.

K. (#2*NK*Tt) [ m _(nzkzw
c 3m kNez’f]_L3e2 }T (36)

This relationship was first experimentally established by G. Wiedemann and P. Franz and then
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theoretically explained by L. Lorentz for metals. Wiedemann and Franz observed that the ratio

Ko mea’}?S C;’“Sta"; for 2}11_ metals at a fixed temperature. However, this was modified by
Lorentz, who observed that it is K./6(T) which remains constant. Accordingly, eq. 58 reduces to

=5 (%)
T = — | = 59
o(T) 3 e2 ) L (59)
_ml (k) _
where L= = er )= 245 x 108 Watt ohm deg‘z, and is known as Lorentz number. Table

10.1 shows the exper.imental values of L for some metals at 0°C and 100°C, respectively. They
are found to agree with the theoretical value (eq. 59). At low temperatures (T << 6p), Lorentz

number tends to decrease because the collision time involved in the two conductivities is not
identical.

Table 10.1 Experimental Lorentz numbers for some metals

Metals Lorentz numbers (L x 10 Watt-ohm/deg?)

0°C 100°C
Aq 2.31 2.37
Au 2.35 2.40
Cd 2.42 2.43
Cu 2.23 2.33
Ir 2.49 2.49
Mo 2.61 2.79
Pb 247 2.56
Pt 2.51 2.60
Sn 2.52 2.49
W 3.04 3.20
Zn 2.31 2.33

Example: A uniform copper wire of length 0.5 m and dimeter 0.3 mm has a resistance of 0.12
Q at 293 K. If the thermal conductivity of the specimen at the same temperature is 390 Wm™!
K, calculate the Lorentz number. Compare this value with the theoretical value.

Solution: Given: 1 =0.5m, d =0.3 mm = 0.3 x 10> m, so that r = 0.15 x 1073 m R=0.12 W,

the Lorentz number = ?
We know that the resistance of a wire in terms of its length and its radius is given by
1 1

R=p—=
pztr2 onr?

1 0.5 Q- 'm!
- _ =5.89x 107 Q
P O Rart T 012X 7(0.15 x 107)? "

Hence, using eq. 59, we can obtain the Lorentz number as

K, 390

_ - =2.26 X 108 WQK 2
o(T) 589 x 107 x 293

L
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. . g . obtained by usin
On the other hand, the theoretical value of the Lorentz number can be obté y g the
expression

7

=2.84 x 10" WQK™?

,_nrkl)_ﬁ{LMxlw”\
"o Sl ox 107y

2
‘l

, . : at the theoretical valye ;
Comparing the above two values of Lorentz numbers, we observe (hat the ueis
about 1.26 times higher than the experimental one.

10.13 THE ELECTRICAL RESISTIVITY OF METALS

At room temperature (~300 K) the electrical resistivity of most 'm'etals is dominated by 'lhc
collisions of conduction electrons with the phonons of the lattice (arising due to any perturbatiop
in the normal positions of the atoms). On the other hand, at liquid helium [emperatl{re (or arqund
absolute zero) it is due to the collisions of electrons with the impurity atoms er other 1mpeﬁectnqn5
(such as vacancies, dislocations, grain boundaries, etc.) that are preser‘lt m .a re.al crystal (Fig.
10.18). Thus in general, the resistivity of a metal containing imperfections is given by

p=pi+p; (60)

where p; is the resistivity caused by the thermal vibrations of the lattice, p; (also called the
residual resistivity) is the resistivity caused by the scattering of electrons by impurity atoms. For
small impurity content, p, is often independent of the number of defects &, and p; is proportional
to the N; but independent of temperature. Equation 60 is known as Matthiessen’s rule. This
becomes less accurate at high temperatures or at high impurity content.

ppe=T
pP=pi+p, ’

pp(Scattering by phonons)

Residual
resistivity 4
Po S 5 ¢ ags
ppe=<T Po (Scattering by impurities)
Y

_’T

Fig. 10.18 The electrical resistivity in a real crystal

At very low temperatures, the scattering by phonon is negligible because of negligibly small
amplitude of vibration. Therefore, as T approaches zero, 1

tends to infinity so that p, approaches
zero and hence p = p,

. from eq. 60. This is in agreement with the experimental results. Measurements
on sodium show that p,(0) may vary from specimen to specimen, whereas p\(T) = p — p,(0) is

independent of the specimen. As the temperature increases, the scattering by phonons becomes
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more effective and py(T) increases line '
. arly with . P .
the experimental results, Y temperature. This again, is in agreemgm with

simple method to estj : :
e/:sure It)he 2o of the rtm'lat-e -t}?e overall impurity and perfection of a metal (conductor) is to
L esistivities at room temperature and at helium temperature, i.e.

p(300 K)
PE2K)

the resistivity ratio is approximately given by
£ (300 K) + p;
pi
For chemically pure and structurally perfect metals, the resistivity ratio may be as high as 108,

On the other .ha‘nd, for commercial purity materials, this ratio is of the order of 102, while for
some alloys, it is as low as 1,

Since, at 4.2 K, p=p,,

MfgllhleSS(?n s rule is nqt always valid. Calculation of resistivity due to lattice vibration p;,
have been quite successful in some metals. Empirically, one finds that p, is rather well represented

by a universal function,
| L_|.f[L
4 (Meg) f(aR) (61)

where4the funcflo.n f goes to unity at high temperatures. However, at low temperatures, f o
(T/6g)". The resistive characteristic temperature 6y is close to the Debye temperature for metals.

Example: Calculate the percentage increase in the resistivity of nichrome when it is heated from
300 K to 1000 K. The temperature coefficient of resistance of nichrome is 0.0001.

Solution: Given: T; =300 K, T, = 1000 K, o= 0.0001, (p;000 — P300) = ? According to Matthiessen’s
rule, we know that the resistivity of a metal containing impurity can be written as

p=pi+p(N)=pi+al
Therefore, Pago = P; + T and pyggo = p; + 0T,
or P1o0o — Paco = T2 — T) = 7000 = 700 x 0.0001 = 0.07
Therefore the percentage increase in the resistivity is

0.07 x 100 = 7%

10.14 THERMIONIC EMISSION

When a metal is heated, electrons are emitted from its surface, a phenomenon called thermionic
emission. In sections 10.2 and 10.3, we considered that the height of the potential barrier is
infinitely large. However, this is not actually the case in real crystals. At absolute zero:
(i) the height of the potential energy barrier can be taken equal to Eg + e¢ as shown in Fig.
10.19, where Ef is the Fermi energy and e¢ is the work function.
(ii) all the levels upto the Fermi level are filled, and all the levels above the Fermi level are
empty.
(iii) no electrons can escape from the metals.
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\ergy required to remove an electron from the Fern;
is expressed in volts and e¢ in electrop Vol
ction due to positive ions at the surface of

The work function e¢ is the minimum er
surface to the vacuum outside the metal, where ¢
(eV). The voltage ¢ is required to overcome the atlra. 0N ¢ HE
the metal. Fig. 10.20 shows an ideal potential (pe'rIOdIC n "f”"_re) encountered by eleclmnS
and the potential energy barrier at the surface of the Mety|
In our day to day life, we do not observe any electron emission from me.tal sur'face even al rogp,
temperature. However, as the temperature is increased further, the electi ons lying near the Ferm;
level get exited and begin to fill the levels above E. Thus, when a metal is heated, (1._e. when 5
energy greater than Eg + e@ is supplied), electrons are observed to be emitted from its Surface.

along a row of atoms near the surface

This phenomenon is known as thermionic emission.

o« ——Electron Vacuum . Inside Outside
e e R L[] o 0. el - f T> 0 r

L4 . ® e ® o ¢ ) \
e ® o o © &

Fig. 10.20 Idealized potential energy of an electrop
along a row of atoms near the surface, and
the potential energy barrier at the surface
of the metal. The shaded area represents
electron energy as given by the Fermj
distribution shown on the left

Fig. 10.19 Thermionric emission

In order to evaluate the current density for the emitted electrons, let us consider a metal
surface held normal to the x-direction. Then, for an electron to escape from the metal surface, we

must have

%muf > (Ep + ef) (62)

where vy, and v, can have any values including + e and — oo,
Now, let us write the density of occupied states (eq. 19) per unit volume in terms of velocity of
electrons by substituting E = 1/2(mv?), so that dE = mvdv. The modified equation becomes

8m? v2dv )
hJ E - EF
exp T + 1

Then the current density J, will be eV, times the density of occupied states per unit volume. To
simplify the problem, let us integrate the resulting equation over all electron velocities using
cartesian coordinate system instead of spherical coordinate system. Thus replacing the quantity
Jarv2dv by [ dv,dvdv,, the current density J, can be written as

N@)dv = F(v)g(v)dy =
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©o

3 00 oo
gy = zcl vydu,dvydu,
’13 J- (F_F.- (64)

= |2(Ep+eg) Vy=-o V,=-00 €X l L+ 1
vx_m y z p - kT

In general, (E - Fg) >> kT, therefore (
large than unity. Thus neglecting the
reduces to

€ exponential term in the above equation is also very very
digit 1 which is appearing in the denominator, the eq. 64

o

_ 2em?

T 2 v2 2
Jx I3 J J. J. exp _ [ mux + "y + dad? - Eg (65)
S kT| 2 2 2
Vx=\j—m Vy=—°° V;=-c0
m ’

Now, making use of the standard form of the integral, i.e.

L-c]

j exp(-ax?) = (%)1/2

-—00

the above integrals separately can be given by

T i < 2 12 _
J. exp(—ﬁ)dvz = J‘ exp[_%l:%)dvy = (%kl.) (66)
I - (_mvf\_, _ kT E +ed

and PR T T P T T (67)
V‘Ivn(E;;:etp)

Hence, the current density is given by

4 memk? € 5 e '
Jo= e T?. exp(—zg) = AT?. exp(— %—) (68)

where A = (47em K2/H%) = 1.20 x 10 Am™K 2. Equation 68 is commonly known as Richardson-
Dushman equation. This is in agreement with the experimental results. The eq. 68 can further be
written as

Jx _ f e¢\
73 = Ao ~57 )
Iy ZAR
or ln}? =InA - (T) T (69)

If we plot a curve between In (JX/T2) versus 1/, we obtain a straight line which has a slope of
(e¢/k) and the intercept equal to In A as shown in Fig. 10.21.
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Example: The work function of tungsten is 4.5
eV. Calculate the thermionic emission of a
filament 0.05 m long and 10~ m diameter at
2400 K.

Solution: Given: ¢ = 4.5 eV, 2r=D =10 m,
| =0.05m, T = 2400K, A = 1.20 x 10° Am™ I
K2 1=7?

The surface area of the filament, a =27l = }
% 10~ % 0.05 = 57 % 1078 m*. Now, making use 0 ——IIT
of the eq. 68 and substituting different values, Fig. 10.21 A plot between 1/T and log J/T?

the value of the current can be obtained as

log =7

F i e¢
I=axJ=ax AT?-exp _ﬁ)

.

2 6 2 _ 45x16x107"
=5rx 107" % 1.20 x 10° (2400)° X cxp( 138 % 10-2 x 2400

= 57 % 107 x 1.20 x 10° (2400)? x exp (-21.739)
= 5mx 107 x 1.20 x 10° (2400)? x 3.62 x 107'% = 393 x 107~ amp

10.15 THE HALL EFFECT

Let us consider a rectangular metal slab carrying a current density J, in the positive x-direction
and placed in a uniform magnetic field of induction B acting perpendicular to both the conductor
and the current as shown in Fig. 10.22. Under

such an experimental arrangement, in 1879 G. \

B, Magnetic field in
Hall found that a voltage (called the Hall voltage) z-direction
is developed at right angles to both the current
and the magnetic field. l

In the absence of the magnetic field, the
conduction electrons drift with a velocity v, in Ciirrertin
the negative x-direction. However, when the \ x-direction

field is applied, a force (called the Lorentz force) \

causes the electron path to deflect towards the

front face of the rectangular block. As a result, Hall voltage in

an excess of electrons accumulate on the front y-direction

face of the slab. Simultaneously, equal number Fig. 10.22  The Hall effect

of positive charge appears (due to the deficiency

of electrons) on the opposite face of the slab. The appearance of the opposite charges on the
opposite faces creates an electric field (called the Hall field) directed towards the positive y-axis.

The Lorentz force Fy acting on an electron which is moving from right to left with a velocity
vis

FL=-ev, X B, =~ ev,B, (since v, is L B) (70)
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Further, the accumulated charges on the o
opposite to the Lorentz fo
completely cancels the L

Ppositive faces produce a force (called Hall force)

r : : :
ce. Hence, the accumulation process continues until the Hall force
orentz force, In equilibrium, Fy = Fy,ie.

eEH ST evaz or EH = - UXBZ (71)

Further, the current density, J, is given by the equation

Jx =nev, or E, =-(L) BJ, (72)
ne

This shows that the Hall. ﬁelq is Proportional to both the magnetic field and the current density.
The constant of proportionality in €q. 72 is known as Hall constant and is defined by

Ry=-— (73)
ne

whi.Ch is inversely proportional to the density of charge carrier, n. The sign of the Hall constant
indicates the nature of the charge carrier that predominate in the conduction process. If Ry is

negative, the predominant charge is electron and vice versa. The measurement of Hall voltage
helps us to know the following:

1. The sign of the predominant charge carrier.
2. The charge density.

3. The mobility of the charge carriers.

Example: Calculate the Hall coefficient of sodium based on free electron model. Sodium has
bee structure and the side of the cube is 4.28A.

Solution: Given: a = 4.28 A = 4.28 x 10" m, crystal has a bcc structure indicating it contains
2 atoms per unit cell, Hall coefficients = ?

The number of electrons per unit volume for the sodium crystal is given by
2 2

n= —= =2.55%10%/m’
a® (428 x107%°

Now, making use of eq. 73, the Hall coefficient can be obtained as

] 1
S =-245x10""" m*C™'
Ru= = T 255 %10 x1.6x10°"

10.16 SUMMARY

1. The free electron model successfully explains some of the properties of solids, such as
electrical and thermal conductivities, thermionic emission, etc. However, it fails to explain
many other important properties such as behaviour of solids as conductors, semiconductors
or insulators, etc.

2. Free electrons are associated with a continuous energy spectrum and bound electrons
with a discrete energy spectrum. The energy corresponding to the electrons moving in
box of side a is given by
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10.

I1.

. Each combination of these quantum numbers 1s €

2

h ) 2 2
E, = —(n, +my+n)
8ma

‘ itive integer values,
where n,, ny and n, are quantum numbers and can take only positi ger values
' ' alled a quantum state while severy

states having the same energy are said to be degenerate. it volume) be]
At absolute zero, the density of electrons (the number of clectrons per unt Flow

the Fermi level is given by
8n 32 32
= —Qm)"" E;
- )% ( "

As the temperature is increased (particularly above room temperature) the Fermi energy
is found to decrease according to the relation.

/ \2
i

ﬂ.ﬁ
EF= EFn ]'—E

/

X

At low temperatures, the clectronic specific heat of solids is found to be predominant
and varies linearly with T. The electronic specific heat per mole is given by

m* kT
C.= 7 X _T:
The electrical conductivity of conduction electrons, treated as free particles with a collision
time T is given by
Ne’t
m

Wiedemann-Franz-Lorentz law connects the thermal and electrical conductivities according
to the relation

g=

AY

]
k2

\e)

2
F/A

K. _
o 3

. “Taking into account the lattice vibrations and static impurities, the electrical resistivity

of a solid is governed by Matthiessen’s rule

P=pi+p

When a metal is heated, some electrons which are lying just below the Fermi level acquire
sufficient energy and escape from the surface of the metal. The thermionic current density
is given by

\

"’x = ATZ -expl -—%

/
where A is constant and ¢ is the work function of the metal.

Hall effect helps us to determine the following:
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(i) The sign of the current carrying charges.
(ii) The charge density.,

(iti) The mobility of the charge carriers

10.17 DEFINITIONS

Current Density: The electric current per unit area, amperes per square meler.
Electrical conductivity: The proportionality constant in Ohm's law as stated below.

Electric Current: The time rate of passage of charge through a conductor. In S1 units, coulomb per second, called
amperes.

Elcctrica.l Resisl_i\'lr,\': The inverse of the clectrical conductivity, so that the Ohm's law is also E = pJ.
Electronic Specific Heat: The contribution 10 the 1o(a] specific heat duc to transitions of electrons to states of
higher energy.

Fermi Level: In a partially filled energy band at 0K, the Fermi level is the cnergy of the highest filled state. At
higher temperatures, one half of the states at the Fermi level are full.,

Manrlhiefsen s Rule: Thc otal resistivity of a conductor is the sum of lattice contribution as a result of lattice
vibrations and the impurity contribution as a result of presence of imperfections.

Residu.al. Resisrf’viry: The lcﬂ.lp'crmurc independent part of the resistivity of a conductor. This is due to imperfections.
Resistivity Ratio: Usually, itis defined as p(300K)/p(4.2K), although the lower temperature may vary. In order
to estimate the value of residual resistivity {p,(300K) + pi))p, is approximately taken as p,(300K)/p;.

REVIEW QUESTIONS AND PROBLEMS

1. A particle moving in a one dimensional potential, is given by
V(x)=0 for x<0
and V(x) =V, for x20

Write down the Schrodinger wave equation for the particle and solve it.
2. What is an infinite potential well? Obtain Schrodinger's time independent wave equation. Solve it for

a particle in a cubical box of side “a™ and hence obtain expressions for the allowed wave functions and
discrete energy values of the particle,

3. Obtain the eigen values and normalized wave functions for a particle in a one dimensional infinite
potential box of side “a”.

4. A particle of mass m is confined in a field frce region between impenetrable walls at x =0 and x = a.
Show that the stationary energy levels of the particle is given by
r oo hin?

E =
8ma’

Discuss the physical significance of the wave function y.

5. Define Fermi energy. Write down the expression for Fermi-Dirac distribution function. Derive an
expression for Fermi energy of a system of free clectrons.

6. Based the Fermi-Dirac statistics, state the nature of the Fermi distribution function. How does it vary
with temperature?

7. What are the density of states in metals? Derive an expression for the density of encrgy states and hence
obtain the Fermi energy of a metal.

8. What is meant by the Fermi level in metals? How does it vary with temperature in metals?

9. Show that the wavelength associated with an electron having an energy equal to the Fermi energy is

given by
12
2| L
"(3n)
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. The Fermi energy expression at room temperaturc is given by

Calculate the molar specific heat of metals on the basis of Fermi-Dirac statistics and compare j Wit

the classical predicted value.

2

E ald]
iF = Eﬁ; - 12 Eﬁ|

where E, is the Fermi energy at OK. -
Using the above equation, obtain the expression for the mean cnergy of the clectron at room tcmpcmmm.

Also obtain the expression for the molar specific heat of metals on the ba.?is of this distribution,
What do you understand by “degencrate™ and “non degenerate” states? Tﬂkll:lg the example of a Particl,
in a cubical box of side “a”, obtain first few states and present them graphlcall){.

Derive an expression for the electrical conductivity of a free clc.clron gas using the c<_)llision time
concept. Does this result explain the experimental value of resistivity of a normal mctal like sodium,
On the basis of free electron theory derive an expression for the clectrical and thermal conductivity of

metal and hence establish Wiedemann-Franz-Lorentz law. . '
What are the main sources of clectrical resistance in metals? Discuss the effect of impurity, temperatyre

and alloying on the electrical conductivity of metals. '
Explain the variation of electrical conductivity with temperature both at low and high temperayy,

regions. Hence explain Matthiessen’s rule.
Discuss electron-scattering mechanisms in metals and show that the mean free path is Inversely

proportional to absolute temperature for T >> 6.
Obtain the expression of Lorentz number on the basis of quantum theory. Compare it with the ope

predicted on the basis of classical theory.
Discuss the Hall effect. Explain how the measurement of Hall coefficient helps one to determine the

mobility of electrons in metals.

Show that the Hall coefficient is independent of the applied magnetic field and is inversely proportional
to the current density and electronic charge. Mention the important applications of Hall effect.
Discuss the phenomenon of thermionic emission in metals. Obtain Richardson Dushman equation for
the emission of current density.

The thermal conductivity of aluminium at 20°C is 210 Wm™'K~". Calculate the electrical resistivity of

aluminium at this temperature. The Lorentz number for aluminium is 2.02 x 108 WQK2,
Ans. 2.82 x 10 Qm

A copper wire of cross sectional area 5 x 107 sq. cm. carries a steady current of 50 ampere. Assume one
electron per atom, calculate the density of free electrons, the average drift velocity and the relaxation

time. Given: the resistivity of copper = 1.7 x 1078 Qm.
Ans. 8.46 x 10%/m>, 7.4 x 10 m/s and 2.46 x 10" s.

(a) Find the lowest energy of an electron confined in a box of side 1 A.
(b) Find the temperature at which the average energy of the molecule of a perfect gas would be equal

to the lowest energy of the electron.
Ans. 112.9 eV, 8.72 x 10° K.

The electrons in a cubical box of a metal are subject to the influence of a magnetic field such that the
length increases by da while the width and thickness remain the same. Show that the energy difference
between the states (311) and (131) is (h2/8ma2) (16da/a) in the new position.

Evaluate the temperature at which there is 1% probability that a state with an energy 0.5 eV above the

Fermi energy will be occupied by an electron.
Ans. 1264 K.

Calculate the number of states lying in an energy interval of 0.02 eV above the Fermi energy of sodium

crystal of unit volume. For sodium, E = 3.22 eV, Ans. 2.47 x 10%

Use the Fermi distribution function to obtain the value of F(E) for E - Ez = 0.01 eV at 200 K.
Ans. 0.36
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33.

. Calculate the heat capacity of electron
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Show that the probability that a s
state AE below 1s empty,
Assuming the electrons to be free, calcula

ate AE above the Fermi level Eg is filled cquals the probability that a

l a1 g 1 - . .
of volume of 105 m’. ¢ ine total number of states below £ =5 ¢V in a cubical b%x
Ans. 5.1 x 107,

The Fermi encrgy of silver i i

A g)" Esilver is 5..5 eV. Calculate the fraction of free electrons at room temperature located
upto a width of kT on cither side of E;. Ans. 0.0]
£as at room temperature in copper assuming one free electron per

atom. Compare this with the latiice specific heat value of 2,4 x 10* J kmol™ K~'. The Fermi encrgy of

copper is 7 ¢V.

o Ans. 152 x 10 J kmol™ K™, 0.633%.
a resistivity of 10 Qm at 0°C. When it is heated to a temperature
Y 8%. Using Matthicssen's rule, find the resistivity of the alloy.
: Ans. 0.969 x 107 Qm.
The elgctr]lcalc z‘md thermal conductivities of silver at 20°C are 6.2 x 107 @' m™ and 423 W™K,
respectively. Calculate the Lorentz number on the basis of quantum {ree election theory.

Ans. 2.32 x 1078 WQK2,

An alloy of a metal is found 10 have
of 700°C, the resistivity increases b



